Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jun 1;106(6):1911–1925. doi: 10.1083/jcb.106.6.1911

Distribution and lateral mobility of voltage-dependent sodium channels in neurons [published erratum appears in J Cell Biol 1989 May;108(5):preceding 2001]

PMCID: PMC2115131  PMID: 2454930

Abstract

Voltage-dependent sodium channels are distributed nonuniformly over the surface of nerve cells and are localized to morphologically distinct regions. Fluorescent neurotoxin probes specific for the voltage- dependent sodium channel stain the axon hillock 5-10 times more intensely than the cell body and show punctate fluorescence confined to the axon hillock which can be compared with the more diffuse and uniform labeling in the cell body. Using fluorescence photobleaching recovery (FPR) we measured the lateral mobility of voltage-dependent sodium channels over specific regions of the neuron. Nearly all sodium channels labeled with specific neurotoxins are free to diffuse within the cell body with lateral diffusion coefficients on the order of 10(- 9) cm2/s. In contrast, lateral diffusion of sodium channels in the axon hillock is restricted, apparently in two different ways. Not only do sodium channels in these regions diffuse more slowly (10(-10)-10(-11) cm2/s), but also they are prevented from diffusing between axon hillock and cell body. No regionalization or differential mobilities were observed, however, for either tetramethylrhodamine- phosphatidylethanolamine, a probe of lipid diffusion, or FITC-succinyl concanavalin A, a probe for glycoproteins. During the maturation of the neuron, the plasma membrane differentiates and segregates voltage- dependent sodium channels into local compartments and maintains this localization perhaps either by direct cytoskeletal attachments or by a selective barrier to channel diffusion.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelides K. J., Brown G. B. Fluorescence resonance energy transfer on the voltage-dependent sodium channel. Spatial relationship and site coupling between the batrachotoxin and Leiurus quinquestriatus quinquestriatus alpha-scorpion toxin receptors. J Biol Chem. 1984 May 25;259(10):6117–6126. [PubMed] [Google Scholar]
  2. Angelides K. J. Fluorescent and photoactivatable fluorescent derivatives of tetrodotoxin to probe the sodium channel of excitable membranes. Biochemistry. 1981 Jul 7;20(14):4107–4118. doi: 10.1021/bi00517a025. [DOI] [PubMed] [Google Scholar]
  3. Angelides K. J. Fluorescently labelled Na+ channels are localized and immobilized to synapses of innervated muscle fibres. Nature. 1986 May 1;321(6065):63–66. doi: 10.1038/321063a0. [DOI] [PubMed] [Google Scholar]
  4. Angelides K. J., Nutter T. J. Mapping the molecular structure of the voltage-dependent sodium channel. Distances between the tetrodotoxin and Leiurus quinquestriatus quinquestriatus scorpion toxin receptors. J Biol Chem. 1983 Oct 10;258(19):11958–11967. [PubMed] [Google Scholar]
  5. Angelides K. J., Nutter T. J. Molecular and cellular mapping of the voltage-dependent na channel. Biophys J. 1984 Jan;45(1):31–34. doi: 10.1016/S0006-3495(84)84096-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Angelides K. J., Nutter T. J. Preparation and characterization of fluorescent scorpion toxins from Leiurus quinquestriatus quinquestriatus as probes of the sodium channel of excitable cells. J Biol Chem. 1983 Oct 10;258(19):11948–11957. [PubMed] [Google Scholar]
  7. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Axelrod D. Lateral motion of membrane proteins and biological function. J Membr Biol. 1983;75(1):1–10. doi: 10.1007/BF01870794. [DOI] [PubMed] [Google Scholar]
  9. Barchi R. L. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J Neurochem. 1983 May;40(5):1377–1385. doi: 10.1111/j.1471-4159.1983.tb13580.x. [DOI] [PubMed] [Google Scholar]
  10. Beam K. G., Caldwell J. H., Campbell D. T. Na channels in skeletal muscle concentrated near the neuromuscular junction. Nature. 1985 Feb 14;313(6003):588–590. doi: 10.1038/313588a0. [DOI] [PubMed] [Google Scholar]
  11. Bunge M. B., Williams A. K., Wood P. M. Neuron-Schwann cell interaction in basal lamina formation. Dev Biol. 1982 Aug;92(2):449–460. doi: 10.1016/0012-1606(82)90190-7. [DOI] [PubMed] [Google Scholar]
  12. COOMBS J. S., ECCLES J. C., FATT P. The electrical properties of the motoneurone membrane. J Physiol. 1955 Nov 28;130(2):291–325. doi: 10.1113/jphysiol.1955.sp005411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cherry R. J. Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta. 1979 Dec 20;559(4):289–327. doi: 10.1016/0304-4157(79)90009-1. [DOI] [PubMed] [Google Scholar]
  14. Chow I., Poo M. M. Redistribution of cell surface receptors induced by cell-cell contact. J Cell Biol. 1982 Nov;95(2 Pt 1):510–518. doi: 10.1083/jcb.95.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Damjanovich S., Trón L., Szöllösi J., Zidovetzki R., Vaz W. L., Regateiro F., Arndt-Jovin D. J., Jovin T. M. Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5985–5989. doi: 10.1073/pnas.80.19.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Darbon H., Angelides K. J. Structural mapping of the voltage-dependent sodium channel. Distance between the tetrodotoxin and Centruroides suffusus suffusus II beta-scorpion toxin receptors. J Biol Chem. 1984 May 25;259(10):6074–6084. [PubMed] [Google Scholar]
  17. Edidin M., Zuniga M. Lateral diffusion of wild-type and mutant Ld antigens in L cells. J Cell Biol. 1984 Dec;99(6):2333–2335. doi: 10.1083/jcb.99.6.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ellisman M. H., Levinson S. R. Immunocytochemical localization of sodium channel distributions in the excitable membranes of Electrophorus electricus. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6707–6711. doi: 10.1073/pnas.79.21.6707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ellisman M. H. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. J Neurocytol. 1979 Dec;8(6):719–735. doi: 10.1007/BF01206672. [DOI] [PubMed] [Google Scholar]
  20. Ellisman M. H., Porter K. R. Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 1980 Nov;87(2 Pt 1):464–479. doi: 10.1083/jcb.87.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Elmer L. W., O'Brien B. J., Nutter T. J., Angelides K. J. Physicochemical characterization of the alpha-peptide of the sodium channel from rat brain. Biochemistry. 1985 Dec 31;24(27):8128–8137. doi: 10.1021/bi00348a044. [DOI] [PubMed] [Google Scholar]
  22. Elson E. L., Reidler J. A. Analysis of cell surface interactions by measurements of lateral mobility. J Supramol Struct. 1979;12(4):481–489. doi: 10.1002/jss.400120408. [DOI] [PubMed] [Google Scholar]
  23. Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hartshorne R. P., Catterall W. A. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984 Feb 10;259(3):1667–1675. [PubMed] [Google Scholar]
  25. Henis Y. I., Elson E. L. Inhibition of the mobility of mouse lymphocyte surface immunoglobulins by locally bound concanavalin A. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1072–1076. doi: 10.1073/pnas.78.2.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jackson M. B., Lecar H., Brenneman D. E., Fitzgerald S., Nelson P. G. Electrical development in spinal cord cell culture. J Neurosci. 1982 Aug;2(8):1052–1061. doi: 10.1523/JNEUROSCI.02-08-01052.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
  28. Koppel D. E., Sheetz M. P., Schindler M. Matrix control of protein diffusion in biological membranes. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576–3580. doi: 10.1073/pnas.78.6.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kristol C., Sandri C., Akert K. Intramembranous particles at the nodes of Ranvier of the cat spinal cord: a morphometric study. Brain Res. 1978 Mar 10;142(3):391–400. doi: 10.1016/0006-8993(78)90903-4. [DOI] [PubMed] [Google Scholar]
  30. Lander A. D., Fujii D. K., Reichardt L. F. Laminin is associated with the "neurite outgrowth-promoting factors" found in conditioned media. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2183–2187. doi: 10.1073/pnas.82.7.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lazarides E., Nelson W. J., Kasamatsu T. Segregation of two spectrin forms in the chicken optic system: a mechanism for establishing restricted membrane-cytoskeletal domains in neurons. Cell. 1984 Feb;36(2):269–278. doi: 10.1016/0092-8674(84)90220-4. [DOI] [PubMed] [Google Scholar]
  32. Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Linser P. J., Smith K., Angelides K. A comparative analysis of glial and neuronal markers in the retina of fish: variable character of horizontal cells. J Comp Neurol. 1985 Jul 8;237(2):264–272. doi: 10.1002/cne.902370210. [DOI] [PubMed] [Google Scholar]
  34. Miller J. A., Agnew W. S., Levinson S. R. Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry. 1983 Jan 18;22(2):462–470. doi: 10.1021/bi00271a032. [DOI] [PubMed] [Google Scholar]
  35. Myles D. G., Primakoff P., Koppel D. E. A localized surface protein of guinea pig sperm exhibits free diffusion in its domain. J Cell Biol. 1984 May;98(5):1905–1909. doi: 10.1083/jcb.98.5.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nigg E. A., Cherry R. J. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4702–4706. doi: 10.1073/pnas.77.8.4702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  38. Poo M. Rapid lateral diffusion of functional A Ch receptors in embryonic muscle cell membrane. Nature. 1982 Jan 28;295(5847):332–334. doi: 10.1038/295332a0. [DOI] [PubMed] [Google Scholar]
  39. Ransom B. R., Neale E., Henkart M., Bullock P. N., Nelson P. G. Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiologic properties. J Neurophysiol. 1977 Sep;40(5):1132–1150. doi: 10.1152/jn.1977.40.5.1132. [DOI] [PubMed] [Google Scholar]
  40. Ritchie J. M., Rogart R. B. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci U S A. 1977 Jan;74(1):211–215. doi: 10.1073/pnas.74.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rosenbluth J. Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J Neurocytol. 1976 Dec;5(6):731–745. doi: 10.1007/BF01181584. [DOI] [PubMed] [Google Scholar]
  42. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Scott D., Smith K. E., O'Brien B. J., Angelides K. J. Characterization of mammalian neurofilament triplet proteins. Subunit stoichiometry and morphology of native and reconstituted filaments. J Biol Chem. 1985 Sep 5;260(19):10736–10747. [PubMed] [Google Scholar]
  44. Shaw G., Weber K. The distribution of the neurofilament triplet proteins within individual neurones. Exp Cell Res. 1981 Nov;136(1):119–125. doi: 10.1016/0014-4827(81)90043-4. [DOI] [PubMed] [Google Scholar]
  45. Small R. K., Blank M., Ghez R., Pfenninger K. H. Components of the plasma membrane of growing axons. II. Diffusion of membrane protein complexes. J Cell Biol. 1984 Apr;98(4):1434–1443. doi: 10.1083/jcb.98.4.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Small R. K., Pfenninger K. H. Components of the plasma membrane of growing axons. I. Size and distribution of intramembrane particles. J Cell Biol. 1984 Apr;98(4):1422–1433. doi: 10.1083/jcb.98.4.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Strichartz G. R., Small R. K., Pfenninger K. H. Components of the plasma membrane of growing axons. III. Saxitoxin binding to sodium channels. J Cell Biol. 1984 Apr;98(4):1444–1452. doi: 10.1083/jcb.98.4.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stühmer W., Almers W. Photobleaching through glass micropipettes: sodium channels without lateral mobility in the sarcolemma of frog skeletal muscle. Proc Natl Acad Sci U S A. 1982 Feb;79(3):946–950. doi: 10.1073/pnas.79.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Waechter C. J., Schmidt J. W., Catterall W. A. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J Biol Chem. 1983 Apr 25;258(8):5117–5123. [PubMed] [Google Scholar]
  50. Wier M. L., Edidin M. Effects of cell density and extracellular matrix on the lateral diffusion of major histocompatibility antigens in cultured fibroblasts. J Cell Biol. 1986 Jul;103(1):215–222. doi: 10.1083/jcb.103.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wiley-Livingston C., Ellisman M. H. Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration. Dev Biol. 1980 Oct;79(2):334–355. doi: 10.1016/0012-1606(80)90120-7. [DOI] [PubMed] [Google Scholar]
  52. Wiley C. A., Ellisman M. H. Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier. J Cell Biol. 1980 Feb;84(2):261–280. doi: 10.1083/jcb.84.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wolf D. E., Henkart P., Webb W. W. Diffusion, patching, and capping of stearoylated dextrans on 3T3 cell plasma membranes. Biochemistry. 1980 Aug 19;19(17):3893–3904. doi: 10.1021/bi00558a002. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES