Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jun 1;106(6):2211–2221. doi: 10.1083/jcb.106.6.2211

The Chlamydomonas cell wall degrading enzyme, lysin, acts on two substrates within the framework of the wall

PMCID: PMC2115132  PMID: 3384857

Abstract

The Chlamydomonas cell wall is a multilayered, extracellular matrix containing 20-25 proteins and glycoproteins, many of which are highly enriched in hydroxyproline. 80-90% of the wall protein is located in a crystalline portion of the wall that is soluble in sarkosyl-urea solutions as well as in chaotropic salts. Although the wall has no cellulose it contains a noncrystalline, highly insoluble framework portion that is responsible for the integrity and overall shape of the wall. In the present report we show that the framework of the wall is composed of two components that are acted upon by lysin, a wall degrading enzyme released by mating gametes. One, which makes up the major portion of the framework, is insoluble upon boiling in SDS-PAGE sample buffer. Lysin treatment of this portion leads to its physical degradation and the concomitant appearance of several SDS- dithiothreitol-soluble polypeptides ranging in relative molecular mass from greater than 400,000 to less than 60,000. The second component is the flagellar collar. This hollow cylinder composed of striated fibers aligned in parallel array serves as the tunnel in the wall through which the flagella protrude. Our evidence indicates that the primary collar polypeptide is a 225,000-Mr molecule that itself has at least two functional domains. One domain, contained in a 185,000-Mr fragment, permits the self-association of the molecules to form the main body of the collar. The second part of the molecule anchors the collar to the wall framework via sarkosyl-urea-insensitive, SDS-dithiothreitol- sensitive linkages.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. S., Steinmetz S. A., Mattson D. M., Goodenough U. W., Heuser J. E. Nucleated assembly of Chlamydomonas and Volvox cell walls. J Cell Biol. 1987 Nov;105(5):2373–2382. doi: 10.1083/jcb.105.5.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Claes H. Autolyse der Zellwand bei den Gemeten von Chlamydomonas reinhardii. Arch Mikrobiol. 1971;78(2):180–188. [PubMed] [Google Scholar]
  3. Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
  4. Ghuysen J. M. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev. 1968 Dec;32(4 Pt 2):425–464. [PMC free article] [PubMed] [Google Scholar]
  5. Goodenough U. W., Adair W. S., Caligor E., Forest C. L., Hoffman J. L., Mesland D. A., Spath S. Membrane-membrane and membrane-ligand interactions in Chlamydomonas mating. Soc Gen Physiol Ser. 1980;34:131–152. [PubMed] [Google Scholar]
  6. Goodenough U. W., Gebhart B., Mecham R. P., Heuser J. E. Crystals of the Chlamydomonas reinhardtii cell wall: polymerization, depolymerization, and purification of glycoprotein monomers. J Cell Biol. 1986 Aug;103(2):405–417. doi: 10.1083/jcb.103.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodenough U. W., Heuser J. E. The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J Cell Biol. 1985 Oct;101(4):1550–1568. doi: 10.1083/jcb.101.4.1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hills G. J., Gurney-Smith M., Roberts K. Structure, composition, and morphogenesis of the cell wall of Chlamydomonas reinhardi. II. Electron microscopy and optical diffraction analysis. J Ultrastruct Res. 1973 May;43(3):179–192. doi: 10.1016/s0022-5320(73)80031-0. [DOI] [PubMed] [Google Scholar]
  9. Hills G. J., Phillips J. M., Gay M. R., Roberts K. Self-assembly of a plant cell wall in vitro. J Mol Biol. 1975 Aug 15;96(3):431–441. doi: 10.1016/0022-2836(75)90170-9. [DOI] [PubMed] [Google Scholar]
  10. Horne R. W., Davies D. R., Norton K., Gurney-Smith M. Electron microscope and optical diffraction studies on isolated cell walls from Chlamydomonas. Nature. 1971 Aug 13;232(5311):493–495. doi: 10.1038/232493a0. [DOI] [PubMed] [Google Scholar]
  11. Imam S. H., Buchanan M. J., Shin H. C., Snell W. J. The Chlamydomonas cell wall: characterization of the wall framework. J Cell Biol. 1985 Oct;101(4):1599–1607. doi: 10.1083/jcb.101.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Imam S. H., Snell W. J. Degradation of the framework of the Chlamydomonas cell wall by proteases present in a commercially available alpha-amylase preparation. Appl Environ Microbiol. 1987 Jul;53(7):1701–1704. doi: 10.1128/aem.53.7.1701-1704.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jarvik J. W., Rosenbaum J. L. Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii. J Cell Biol. 1980 May;85(2):258–272. doi: 10.1083/jcb.85.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Matsuda Y., Saito T., Yamaguchi T., Kawase H. Cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii is a metalloprotease and digests the sodium perchlorate-insoluble component of cell wall. J Biol Chem. 1985 May 25;260(10):6373–6377. [PubMed] [Google Scholar]
  17. Matsuda Y., Saito T., Yamaguchi T., Koseki M., Hayashi K. Topography of cell wall lytic enzyme in Chlamydomonas reinhardtii: form and location of the stored enzyme in vegetative cell and gamete. J Cell Biol. 1987 Feb;104(2):321–329. doi: 10.1083/jcb.104.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  19. Miller D. H., Lamport D. T., Miller M. Hydroxyproline heterooligosaccharides in Chlamydomonas. Science. 1972 May 26;176(4037):918–920. doi: 10.1126/science.176.4037.918. [DOI] [PubMed] [Google Scholar]
  20. Miller D. H., Mellman I. S., Lamport D. T., Miller M. The chemical composition of the cell wall of Chlamydomonas gymnogama and the concept of a plant cell wall protein. J Cell Biol. 1974 Nov;63(2 Pt 1):420–429. doi: 10.1083/jcb.63.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roberts K. Crystalline glycoprotein cell walls of algae: their stucture, composition and assembly. Philos Trans R Soc Lond B Biol Sci. 1974 Jul 25;268(891):129–146. doi: 10.1098/rstb.1974.0021. [DOI] [PubMed] [Google Scholar]
  23. Roberts K., Grief C., Hills G. J., Shaw P. J. Cell wall glycoproteins: structure and function. J Cell Sci Suppl. 1985;2:105–127. doi: 10.1242/jcs.1985.supplement_2.6. [DOI] [PubMed] [Google Scholar]
  24. Roberts K., Gurney-Smith M., Hills G. J. Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. I. Ultrastructure and preliminary chemical analysis. J Ultrastruct Res. 1972 Sep;40(5):599–613. doi: 10.1016/s0022-5320(72)80046-7. [DOI] [PubMed] [Google Scholar]
  25. Snell W. J. Study of the release of cell wall degrading enzymes during adhesion of Chlamydomonas gametes. Exp Cell Res. 1982 Mar;138(1):109–119. doi: 10.1016/0014-4827(82)90096-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES