Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jun 1;106(6):1873–1878. doi: 10.1083/jcb.106.6.1873

Phagocytosis by human macrophages is accompanied by changes in ionic channel currents

PMCID: PMC2115140  PMID: 2454928

Abstract

The present study has shown that changes in ionic channel currents accompany the phagocytosis of particles by mononuclear phagocytes. The patch-clamp technique in the cell-attached configuration was applied to human monocyte-derived macrophages to measure the activity of single transmembrane ionic channels in intact cells. During such measurements, IgG-opsonized and non-opsonized latex particles were offered for phagocytosis under continuous video-microscopical observation. Single particles were presented to the phagocytes at a membrane location some distance from that of the patch electrode. After a lag period following particle attachment, enhanced inward and outward time-variant single channel currents coinciding with particle engulfment were observed. On the basis of current-voltage characteristics and membrane potential measurements, the outward-directed channels were identified as K+ channels. Phagocytosis was also accompanied by slow transient changes in background membrane currents, probably due to changes in the membrane potential of the phagocytosing cell. Phagocytosis of IgG- coated latex particles differed from phagocytosis of uncoated or albumin-coated particles by a shorter lag time between particle attachment and the onset of enhanced ionic channel activity.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deierkauf F. A., Beukers H., Deierkauf M., Riemersma J. C. Phygocytosis by rabbit polymorphonuclear leukocytes: the effect of albumin and polyamino acids on latex uptake. J Cell Physiol. 1977 Aug;92(2):169–175. doi: 10.1002/jcp.1040920205. [DOI] [PubMed] [Google Scholar]
  2. Diaz B., Niubo E., Companioni M., Ancheta O., Kouri J. Effects of cytochalasin B and of deoxyglucose on phagocytosis-related changes in membrane potential in rat peritoneal macrophages. Exp Cell Res. 1984 Feb;150(2):494–498. doi: 10.1016/0014-4827(84)90595-0. [DOI] [PubMed] [Google Scholar]
  3. Fischmeister R., Ayer R. K., Jr, DeHaan R. L. Some limitations of the cell-attached patch clamp technique: a two-electrode analysis. Pflugers Arch. 1986 Jan;406(1):73–82. doi: 10.1007/BF00582957. [DOI] [PubMed] [Google Scholar]
  4. Gallin E. K. Calcium- and voltage-activated potassium channels in human macrophages. Biophys J. 1984 Dec;46(6):821–825. doi: 10.1016/S0006-3495(84)84080-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gallin E. K., Gallin J. I. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J Cell Biol. 1977 Oct;75(1):277–289. doi: 10.1083/jcb.75.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallin E. K., Sheehy P. A. Differential expression of inward and outward potassium currents in the macrophage-like cell line J774.1. J Physiol. 1985 Dec;369:475–499. doi: 10.1113/jphysiol.1985.sp015911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffin F. M., Jr, Griffin J. A., Leider J. E., Silverstein S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 1975 Nov 1;142(5):1263–1282. doi: 10.1084/jem.142.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  9. Ince C., Leijh P. C., Meijer J., Van Bavel E., Ypey D. L. Oscillatory hyperpolarizations and resting membrane potentials of mouse fibroblast and macrophage cell lines. J Physiol. 1984 Jul;352:625–635. doi: 10.1113/jphysiol.1984.sp015313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ince C., Thio B., van Duijn B., van Dissel J. T., Ypey D. L., Leijh P. C. Intracellular K+, Na+ and Cl- concentrations and membrane potential in human monocytes. Biochim Biophys Acta. 1987 Nov 27;905(1):195–204. doi: 10.1016/0005-2736(87)90023-x. [DOI] [PubMed] [Google Scholar]
  11. Ince C., Van Duijn B., Ypey D. L., Van Bavel E., Weidema F., Leijh P. C. Ionic channels and membrane hyperpolarization in human macrophages. J Membr Biol. 1987;97(3):251–258. doi: 10.1007/BF01869227. [DOI] [PubMed] [Google Scholar]
  12. Ince C., Ypey D. L., Van Furth R., Verveen A. A. Estimation of the membrane potential of cultured macrophages from the fast potential transient upon microelectrode entry. J Cell Biol. 1983 Mar;96(3):796–801. doi: 10.1083/jcb.96.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ince C., van Bavel E., van Duijn B., Donkersloot K., Coremans A., Ypey D. L., Verveen A. A. Intracellular microelectrode measurements in small cells evaluated with the patch clamp technique. Biophys J. 1986 Dec;50(6):1203–1209. doi: 10.1016/S0006-3495(86)83563-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ince C., van Dissel J. T., Diesselhoff M. M. A teflon culture dish for high-magnification microscopy and measurements in single cells. Pflugers Arch. 1985 Mar;403(3):240–244. doi: 10.1007/BF00583594. [DOI] [PubMed] [Google Scholar]
  15. Kouri J., Noa M., Diaz B., Niubo E. Hyperpolarisation of rat peritoneal macrophages phagocytosing latex particles. Nature. 1980 Feb 28;283(5750):868–869. doi: 10.1038/283868a0. [DOI] [PubMed] [Google Scholar]
  16. Leijh P. C., van den Barselaar M. T., van Furth R. Kinetics of phagocytosis and intracellular killing of Staphylococcus aureus and Escherichia coli by human monocytes. Scand J Immunol. 1981;13(2):159–174. doi: 10.1111/j.1365-3083.1981.tb00122.x. [DOI] [PubMed] [Google Scholar]
  17. Leijh P. C., van den Barselaar M. T., van Zwet T. L., Daha M. R., van Furth R. Requirement of extracellular complement and immunoglobulin for intracellular killing of micro-organisms by human monocytes. J Clin Invest. 1979 Apr;63(4):772–784. doi: 10.1172/JCI109362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCann F. V., Cole J. J., Guyre P. M., Russell J. A. Action potentials in macrophages derived from human monocytes. Science. 1983 Feb 25;219(4587):991–993. doi: 10.1126/science.6823563. [DOI] [PubMed] [Google Scholar]
  19. Miles P. R., Bowman L., Castranova V. Transmembrane potential changes during phagocytosis in rat alveolar macrophages. J Cell Physiol. 1981 Jan;106(1):109–117. doi: 10.1002/jcp.1041060112. [DOI] [PubMed] [Google Scholar]
  20. Nelson D. J., Jacobs E. R., Tang J. M., Zeller J. M., Bone R. C. Immunoglobulin G-induced single ionic channels in human alveolar macrophage membranes. J Clin Invest. 1985 Aug;76(2):500–507. doi: 10.1172/JCI111999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oliveira-Castro G. M. Ca2+-sensitive K+ channels in phagocytic cell membranes. Cell Calcium. 1983 Dec;4(5-6):475–492. doi: 10.1016/0143-4160(83)90023-4. [DOI] [PubMed] [Google Scholar]
  22. Persechini P. M., Araujo E. G., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes: induction of slow membrane hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection. J Membr Biol. 1981;61(2):81–90. doi: 10.1007/BF02007634. [DOI] [PubMed] [Google Scholar]
  23. Randriamampita C., Trautmann A. Ionic channels in murine macrophages. J Cell Biol. 1987 Aug;105(2):761–769. doi: 10.1083/jcb.105.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwarze W., Kolb H. A. Voltage-dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes. Pflugers Arch. 1984 Nov;402(3):281–291. doi: 10.1007/BF00585511. [DOI] [PubMed] [Google Scholar]
  25. Shaw D. R., Griffin F. M., Jr Phagocytosis requires repeated triggering of macrophage phagocytic receptors during particle ingestion. Nature. 1981 Jan 29;289(5796):409–411. doi: 10.1038/289409a0. [DOI] [PubMed] [Google Scholar]
  26. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  27. Young J. D., Unkeless J. C., Kaback H. R., Cohn Z. A. Macrophage membrane potential changes associated with gamma 2b/gamma 1 Fc receptor-ligand binding. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1357–1361. doi: 10.1073/pnas.80.5.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Young J. D., Unkeless J. C., Young T. M., Mauro A., Cohn Z. A. Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel. Nature. 1983 Nov 10;306(5939):186–189. doi: 10.1038/306186a0. [DOI] [PubMed] [Google Scholar]
  29. Ypey D. L., Clapham D. E. Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages. Proc Natl Acad Sci U S A. 1984 May;81(10):3083–3087. doi: 10.1073/pnas.81.10.3083. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES