Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jun 1;106(6):2057–2065. doi: 10.1083/jcb.106.6.2057

A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation

PMCID: PMC2115143  PMID: 3164313

Abstract

A neuroblastoma protein related to the brain microtubule-associated protein, MAP-1B, as determined by immunoprecipitation and coassembly with brain microtubules, becomes phosphorylated when N2A mouse neuroblastoma cells are induced to generate microtubule-containing neurites. To characterize the protein kinases that may be involved in this in vivo phosphorylation of MAP-1B, we have studied its in vitro phosphorylation. In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2. A similar kinase activity has been detected in cell-free extracts of differentiating N2A cells. Using brain MAP preparations devoid of endogenous kinase activities and different purified protein kinases, we have found that MAP-1B is barely phosphorylated by cAMP-dependent protein kinase, Ca/calmodulin- dependent protein kinase, or Ca/phospholipid-dependent protein kinase whereas MAP-1B is one of the preferred substrates, together with MAP- 1A, for casein kinase II. Brain MAP-1B phosphorylated in vitro by casein kinase II efficiently coassembles with microtubule proteins in the same way as in vivo phosphorylated MAP-1B from neuroblastoma cells. Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B. Thus, we suggest that the observed phosphorylation of a protein identified as MAP-1B during neurite outgrowth is mainly due to the activation of a casein kinase II-related activity in differentiating neuroblastoma cells. This kinase activity, previously implicated in beta-tubulin phosphorylation (Serrano, L., J. Diaz-Nido, F. Wandosell, and J. Avila, 1987. J. Cell Biol. 105: 1731-1739), may consequently have an important role in posttranslational modifications of microtubule proteins required for neuronal differentiation.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artlieb U., Krepler R., Wiche G. Expression of microtubule-associated proteins, MAP-1 and MAP-2, in human neuroblastomas and differential diagnosis of immature neuroblasts. Lab Invest. 1985 Dec;53(6):684–691. [PubMed] [Google Scholar]
  2. Black M. M., Aletta J. M., Greene L. A. Regulation of microtubule composition and stability during nerve growth factor-promoted neurite outgrowth. J Cell Biol. 1986 Aug;103(2):545–557. doi: 10.1083/jcb.103.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black M. M., Cochran J. M., Kurdyla J. T. Solubility properties of neuronal tubulin: evidence for labile and stable microtubules. Brain Res. 1984 Mar 19;295(2):255–263. doi: 10.1016/0006-8993(84)90974-0. [DOI] [PubMed] [Google Scholar]
  4. Bloom G. S., Luca F. C., Vallee R. B. Microtubule-associated protein 1B: identification of a major component of the neuronal cytoskeleton. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5404–5408. doi: 10.1073/pnas.82.16.5404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonifacino J. S., Klausner R. D., Sandoval I. V. A widely distributed nuclear protein immunologically related to the microtubule-associated protein MAP1 is associated with the mitotic spindle. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1146–1150. doi: 10.1073/pnas.82.4.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burstein D. E., Greene L. A. Evidence for RNA synthesis-dependent and -independent pathways in stimulation of neurite outgrowth by nerve growth factor. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6059–6063. doi: 10.1073/pnas.75.12.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burstein D. E., Seeley P. J., Greene L. A. Lithium ion inhibits nerve growth factor-induced neurite outgrowth and phosphorylation of nerve growth factor-modulated microtubule-associated proteins. J Cell Biol. 1985 Sep;101(3):862–870. doi: 10.1083/jcb.101.3.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  9. Daniels M. P. Colchicine inhibition of nerve fiber formation in vitro. J Cell Biol. 1972 Apr;53(1):164–176. doi: 10.1083/jcb.53.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dedman J. R., Potter J. D., Jackson R. L., Johnson J. D., Means A. R. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem. 1977 Dec 10;252(23):8415–8422. [PubMed] [Google Scholar]
  11. Drubin D. G., Feinstein S. C., Shooter E. M., Kirschner M. W. Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol. 1985 Nov;101(5 Pt 1):1799–1807. doi: 10.1083/jcb.101.5.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Díez J. C., de la Torre J., Avila J. Differential association of the different brain microtubule proteins in different in vitro assembly conditions. Biochim Biophys Acta. 1985 Jan 28;838(1):32–38. [PubMed] [Google Scholar]
  13. Eipper B. A. Rat brain tubulin and protein kinase activity. J Biol Chem. 1974 Mar 10;249(5):1398–1406. [PubMed] [Google Scholar]
  14. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  15. Gard D. L., Kirschner M. W. A polymer-dependent increase in phosphorylation of beta-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J Cell Biol. 1985 Mar;100(3):764–774. doi: 10.1083/jcb.100.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greene L. A., Drexler S. A., Connolly J. L., Rukenstein A., Green S. H. Selective inhibition of responses to nerve growth factor and of microtubule-associated protein phosphorylation by activators of adenylate cyclase. J Cell Biol. 1986 Nov;103(5):1967–1978. doi: 10.1083/jcb.103.5.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Greene L. A., Liem R. K., Shelanski M. L. Regulation of a high molecular weight microtubule-associated protein in PC12 cells by nerve growth factor. J Cell Biol. 1983 Jan;96(1):76–83. doi: 10.1083/jcb.96.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hathaway G. M., Traugh J. A. Casein kinases--multipotential protein kinases. Curr Top Cell Regul. 1982;21:101–127. [PubMed] [Google Scholar]
  19. Herrmann H., Dalton J. M., Wiche G. Microheterogeneity of microtubule-associated proteins, MAP-1 and MAP-2, and differential phosphorylation of individual subcomponents. J Biol Chem. 1985 May 10;260(9):5797–5803. [PubMed] [Google Scholar]
  20. Jameson L., Frey T., Zeeberg B., Dalldorf F., Caplow M. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry. 1980 May 27;19(11):2472–2479. doi: 10.1021/bi00552a027. [DOI] [PubMed] [Google Scholar]
  21. Joshi H. C., Baas P., Chu D. T., Heidemann S. R. The cytoskeleton of neurites after microtubule depolymerization. Exp Cell Res. 1986 Mar;163(1):233–245. doi: 10.1016/0014-4827(86)90576-8. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Luca F. C., Bloom G. S., Vallee R. B. A monoclonal antibody that cross-reacts with phosphorylated epitopes on two microtubule-associated proteins and two neurofilament polypeptides. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1006–1010. doi: 10.1073/pnas.83.4.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meggio F., Deana A. D., Pinna L. A. Endogenous phosphate acceptor proteins for rat liver cytosolic casein kinases. J Biol Chem. 1981 Dec 10;256(23):11958–11961. [PubMed] [Google Scholar]
  25. Olmsted J. B. Tubulin pools in differentiating neuroblastoma cells. J Cell Biol. 1981 Jun;89(3):418–423. doi: 10.1083/jcb.89.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Piras M. M., Piras R. Phosphorylation of vinblastine-isolated microtubules from chick-embryonic muscles. Eur J Biochem. 1974 Sep 16;47(3):443–452. doi: 10.1111/j.1432-1033.1974.tb03711.x. [DOI] [PubMed] [Google Scholar]
  27. Prasad K. N. Differentiation of neuroblastoma cells in culture. Biol Rev Camb Philos Soc. 1975 May;50(2):129–165. doi: 10.1111/j.1469-185x.1975.tb01055.x. [DOI] [PubMed] [Google Scholar]
  28. Sandoval I. V., Cuatrecasas P. Protein kinase associated with tubulin: affinity chromatography and properties. Biochemistry. 1976 Aug 10;15(16):3424–3432. doi: 10.1021/bi00661a005. [DOI] [PubMed] [Google Scholar]
  29. Seeds N. W., Gilman A. G., Amano T., Nirenberg M. W. Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci U S A. 1970 May;66(1):160–167. doi: 10.1073/pnas.66.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Serrano L., Díaz-Nido J., Wandosell F., Avila J. Tubulin phosphorylation by casein kinase II is similar to that found in vivo. J Cell Biol. 1987 Oct;105(4):1731–1739. doi: 10.1083/jcb.105.4.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shiomura Y., Hirokawa N. Colocalization of microtubule-associated protein 1A and microtubule-associated protein 2 on neuronal microtubules in situ revealed with double-label immunoelectron microscopy. J Cell Biol. 1987 Jun;104(6):1575–1578. doi: 10.1083/jcb.104.6.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Taylor S. S. Protein kinases: a diverse family of related proteins. Bioessays. 1987 Jul;7(1):24–29. doi: 10.1002/bies.950070106. [DOI] [PubMed] [Google Scholar]
  35. Vallano M. L., Goldenring J. R., Buckholz T. M., Larson R. E., DeLorenzo R. J. Separation of endogenous calmodulin- and cAMP-dependent kinases from microtubule preparations. Proc Natl Acad Sci U S A. 1985 May;82(10):3202–3206. doi: 10.1073/pnas.82.10.3202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vallee R. B., DiBartolomeis M. J., Theurkauf W. E. A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2). J Cell Biol. 1981 Sep;90(3):568–576. doi: 10.1083/jcb.90.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vallee R. B. On the use of heat stability as a criterion for the identification of microtubule associated proteins (MAPs). Biochem Biophys Res Commun. 1985 Nov 27;133(1):128–133. doi: 10.1016/0006-291x(85)91850-9. [DOI] [PubMed] [Google Scholar]
  38. Walsh M. P., Valentine K. A., Ngai P. K., Carruthers C. A., Hollenberg M. D. Ca2+-dependent hydrophobic-interaction chromatography. Isolation of a novel Ca2+-binding protein and protein kinase C from bovine brain. Biochem J. 1984 Nov 15;224(1):117–127. doi: 10.1042/bj2240117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wandosell F., Serrano L., Hernández M. A., Avila J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J Biol Chem. 1986 Aug 5;261(22):10332–10339. [PubMed] [Google Scholar]
  40. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wiche G., Briones E., Hirt H., Krepler R., Artlieb U., Denk H. Differential distribution of microtubule-associated proteins MAP-1 and MAP-2 in neurons of rat brain and association of MAP-1 with microtubules of neuroblastoma cells (clone N2A). EMBO J. 1983;2(11):1915–1920. doi: 10.1002/j.1460-2075.1983.tb01679.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamada K. M., Spooner B. S., Wessells N. K. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1206–1212. doi: 10.1073/pnas.66.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES