Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jun 1;106(6):2095–2108. doi: 10.1083/jcb.106.6.2095

Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci

PMCID: PMC2115151  PMID: 3384855

Abstract

Adhesive contacts made by filopodia of neuronal growth cones are essential for proper neurite elongation and may have a role in the formation of synaptic junctions. Previously we described the appearance of filamentous materials extending from growth cone surfaces that seem to be associated with the strongly adhesive behavior of filopodia (Tsui, H.-C., K. L. Lankford, and W. L. Klein. 1985. Proc. Natl. Acad. Sci. USA. 82:8256-8260). Here, we have used immunogold labeling to determine whether known adhesive molecules might be localized at points of adhesion and possibly be constituents of the filamentous material. Antibodies to an adhesive molecule (neural cell adhesion molecule [N- CAM]) and to an adhesive macromolecular complex of proteins and proteoglycans (adheron) were localized at the EM level in whole mounts of cultured avian retina cells. Labeling of fixed cells showed that N- CAM and adheron molecules were both present on growth cones and on filopodia. However, filamentous materials extending from the cell surface were labeled with anti-adheron but not with anti-N-CAM. If cells were labeled before fixation, patches of anti-N-CAM labeling occurred in random areas over the growth cones, but adheron antibodies concentrated at points of apparent adhesion. Particularly dense clustering of anti-adheron occurred at individual filopodial tips and at points of contact between pairs of filopodia. The different patterns of labeling imply that N-CAMS do not associate with the main antigenic components of adheron on the membrane surface. Most importantly, the data indicate the N-CAMs were mobile in the membrane but that constituents of adherons were anchored at adhesive loci. An appealing hypothesis is that molecules found in adheron preparations have an important role in establishing the adhesive junctions formed by growth cone filopodia.

Full Text

The Full Text of this article is available as a PDF (7.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler R., Jerdan J., Hewitt A. T. Responses of cultured neural retinal cells to substratum-bound laminin and other extracellular matrix molecules. Dev Biol. 1985 Nov;112(1):100–114. doi: 10.1016/0012-1606(85)90124-1. [DOI] [PubMed] [Google Scholar]
  2. Adler R., Magistretti P. J., Hyndman A. G., Shoemaker W. J. Purification and cytochemical identification of neuronal and non-neuronal cells in chick embryo retina cultures. Dev Neurosci. 1982;5(1):27–39. doi: 10.1159/000112659. [DOI] [PubMed] [Google Scholar]
  3. Adler R., Manthorpe M., Skaper S. D., Varon S. Polyornithine-attached neurite-promoting factors (PNPFs). Culture sources and responsive neurons. Brain Res. 1981 Feb 9;206(1):129–144. doi: 10.1016/0006-8993(81)90105-0. [DOI] [PubMed] [Google Scholar]
  4. Bentley D., Caudy M. Navigational substrates for peripheral pioneer growth cones: limb-axis polarity cues, limb-segment boundaries, and guidepost neurons. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):573–585. doi: 10.1101/sqb.1983.048.01.062. [DOI] [PubMed] [Google Scholar]
  5. Berlot J., Goodman C. S. Guidance of peripheral pioneer neurons in the grasshopper: adhesive hierarchy of epithelial and neuronal surfaces. Science. 1984 Feb 3;223(4635):493–496. doi: 10.1126/science.223.4635.493. [DOI] [PubMed] [Google Scholar]
  6. Berman P., Gray P., Chen E., Keyser K., Ehrlich D., Karten H., LaCorbiere M., Esch F., Schubert D. Sequence analysis, cellular localization, and expression of a neuroretina adhesion and cell survival molecule. Cell. 1987 Oct 9;51(1):135–142. doi: 10.1016/0092-8674(87)90018-3. [DOI] [PubMed] [Google Scholar]
  7. Bozyczko D., Horwitz A. F. The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J Neurosci. 1986 May;6(5):1241–1251. doi: 10.1523/JNEUROSCI.06-05-01241.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  9. Campenot R. B. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4516–4519. doi: 10.1073/pnas.74.10.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cole G. J., Glaser L. A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion. J Cell Biol. 1986 Feb;102(2):403–412. doi: 10.1083/jcb.102.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cole G. J., Glaser L. Cell-substratum adhesion in embryonic chick central nervous system is mediated by a 170,000-mol-wt neural-specific polypeptide. J Cell Biol. 1984 Nov;99(5):1605–1612. doi: 10.1083/jcb.99.5.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cole G. J., Schubert D., Glaser L. Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol. 1985 Apr;100(4):1192–1199. doi: 10.1083/jcb.100.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collins F. Induction of neurite outgrowth by a conditioned-medium factor bound to the culture substratum. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5210–5213. doi: 10.1073/pnas.75.10.5210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Combes P. C., Privat A., Pessac B., Calothy G. Differentiation of chick embryo neuroretina cells in monolayer cultures. An ultrastructural study. I. Seven-day retina. Cell Tissue Res. 1977 Dec 13;185(2):159–173. doi: 10.1007/BF00220661. [DOI] [PubMed] [Google Scholar]
  15. Covault J., Sanes J. R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4544–4548. doi: 10.1073/pnas.82.13.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Crisanti-Combes P., Pessac B., Calothy G. Choline acetyl transferase activity in chick embryo neuroretinas during development in ovo and in monolayer cultures. Dev Biol. 1978 Jul;65(1):228–232. doi: 10.1016/0012-1606(78)90192-6. [DOI] [PubMed] [Google Scholar]
  17. Edelman G. M., Hoffman S., Chuong C. M., Thiery J. P., Brackenbury R., Gallin W. J., Grumet M., Greenberg M. E., Hemperly J. J., Cohen C. Structure and modulation of neural cell adhesion molecules in early and late embryogenesis. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):515–526. doi: 10.1101/sqb.1983.048.01.056. [DOI] [PubMed] [Google Scholar]
  18. Fraser S. E., Murray B. A., Chuong C. M., Edelman G. M. Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4222–4226. doi: 10.1073/pnas.81.13.4222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gall W. E., Edelman G. M. Lateral diffusion of surface molecules in animal cells and tissues. Science. 1981 Aug 21;213(4510):903–905. doi: 10.1126/science.7196087. [DOI] [PubMed] [Google Scholar]
  20. Gundersen R. W., Barrett J. N. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science. 1979 Nov 30;206(4422):1079–1080. doi: 10.1126/science.493992. [DOI] [PubMed] [Google Scholar]
  21. Lander A. D., Tomaselli K., Calof A. L., Reichardt L. F. Studies on extracellular matrix components that promote neurite outgrowth. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):611–623. doi: 10.1101/sqb.1983.048.01.065. [DOI] [PubMed] [Google Scholar]
  22. Lankford K., De Mello F. G., Klein W. L. A transient embryonic dopamine receptor inhibits growth cone motility and neurite outgrowth in a subset of avian retina neurons. Neurosci Lett. 1987 Mar 31;75(2):169–174. doi: 10.1016/0304-3940(87)90292-8. [DOI] [PubMed] [Google Scholar]
  23. Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
  24. Maier C. E., Watanabe M., Singer M., McQuarrie I. G., Sunshine J., Rutishauser U. Expression and function of neural cell adhesion molecule during limb regeneration. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8395–8399. doi: 10.1073/pnas.83.21.8395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Patel N. B., Poo M. M. Perturbation of the direction of neurite growth by pulsed and focal electric fields. J Neurosci. 1984 Dec;4(12):2939–2947. doi: 10.1523/JNEUROSCI.04-12-02939.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Patterson P. H. On the role of proteases, their inhibitors and the extracellular matrix in promoting neurite outgrowth. J Physiol (Paris) 1985;80(4):207–211. [PubMed] [Google Scholar]
  27. Pittman R. N. Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev Biol. 1985 Jul;110(1):91–101. doi: 10.1016/0012-1606(85)90067-3. [DOI] [PubMed] [Google Scholar]
  28. Pollerberg G. E., Schachner M., Davoust J. Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature. 1986 Dec 4;324(6096):462–465. doi: 10.1038/324462a0. [DOI] [PubMed] [Google Scholar]
  29. Riopelle R. J., Cameron D. A. Neurite-promoting factors from embryonic neurons. Brain Res. 1984 Aug;317(2):265–274. doi: 10.1016/0165-3806(84)90103-2. [DOI] [PubMed] [Google Scholar]
  30. Rogers S. L., Edson K. J., Letourneau P. C., McLoon S. C. Distribution of laminin in the developing peripheral nervous system of the chick. Dev Biol. 1986 Feb;113(2):429–435. doi: 10.1016/0012-1606(86)90177-6. [DOI] [PubMed] [Google Scholar]
  31. Rutishauser U., Hoffman S., Edelman G. M. Binding properties of a cell adhesion molecule from neural tissue. Proc Natl Acad Sci U S A. 1982 Jan;79(2):685–689. doi: 10.1073/pnas.79.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rutishauser U. Influences of the neural cell adhesion molecule on axon growth and guidance. J Neurosci Res. 1985;13(1-2):123–131. doi: 10.1002/jnr.490130109. [DOI] [PubMed] [Google Scholar]
  33. Schubert D., LaCorbiere M., Esch F. A chick neural retina adhesion and survival molecule is a retinol-binding protein. J Cell Biol. 1986 Jun;102(6):2295–2301. doi: 10.1083/jcb.102.6.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schubert D., LaCorbiere M. Isolation of a cell-surface receptor for chick neural retina adherons. J Cell Biol. 1985 Jan;100(1):56–63. doi: 10.1083/jcb.100.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schubert D., LaCorbiere M. Isolation of an adhesion-mediating protein from chick neural retina adherons. J Cell Biol. 1985 Sep;101(3):1071–1077. doi: 10.1083/jcb.101.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schubert D., LaCorbiere M., Klier F. G., Birdwell C. A role for adherons in neural retina cell adhesion. J Cell Biol. 1983 Apr;96(4):990–998. doi: 10.1083/jcb.96.4.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Silver J., Rutishauser U. Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet. Dev Biol. 1984 Dec;106(2):485–499. doi: 10.1016/0012-1606(84)90248-3. [DOI] [PubMed] [Google Scholar]
  38. Siman R. G., Klein W. L. Differential regulation of muscarinic and nicotinic receptors by cholinergic stimulation in cultured avian retina cells. Brain Res. 1983 Feb 28;262(1):99–108. doi: 10.1016/0006-8993(83)90473-0. [DOI] [PubMed] [Google Scholar]
  39. Singer M., Nordlander R. H., Egar M. Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol. 1979 May 1;185(1):1–21. doi: 10.1002/cne.901850102. [DOI] [PubMed] [Google Scholar]
  40. Thanos S., Bonhoeffer F., Rutishauser U. Fiber-fiber interaction and tectal cues influence the development of the chicken retinotectal projection. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1906–1910. doi: 10.1073/pnas.81.6.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thiery J. P., Brackenbury R., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem. 1977 Oct 10;252(19):6841–6845. [PubMed] [Google Scholar]
  42. Thor G., Pollerberg E. G., Schachner M. Molecular association of two neural cell adhesion molecules within the surface membrane of cultured mouse neuroblastoma cells. Neurosci Lett. 1986 May 15;66(2):121–126. doi: 10.1016/0304-3940(86)90176-x. [DOI] [PubMed] [Google Scholar]
  43. Tomaselli K. J., Reichardt L. F., Bixby J. L. Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices. J Cell Biol. 1986 Dec;103(6 Pt 2):2659–2672. doi: 10.1083/jcb.103.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tosney K. W., Landmesser L. T. Development of the major pathways for neurite outgrowth in the chick hindlimb. Dev Biol. 1985 May;109(1):193–214. doi: 10.1016/0012-1606(85)90360-4. [DOI] [PubMed] [Google Scholar]
  45. Tosney K. W., Watanabe M., Landmesser L., Rutishauser U. The distribution of NCAM in the chick hindlimb during axon outgrowth and synaptogenesis. Dev Biol. 1986 Apr;114(2):437–452. doi: 10.1016/0012-1606(86)90208-3. [DOI] [PubMed] [Google Scholar]
  46. Tsui H. C., Lankford K. L., Klein W. L. Differentiation of neuronal growth cones: specialization of filopodial tips for adhesive interactions. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8256–8260. doi: 10.1073/pnas.82.23.8256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vogel Z., Daniels M. P., Nirenberg M. Synapse and acetylcholine receptor synthesis by neurons dissociated from retina. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2370–2374. doi: 10.1073/pnas.73.7.2370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. de Mello M. C., Ventura A. L., Paes de Carvalho R., Klein W. L., de Mello F. G. Regulation of dopamine- and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5708–5712. doi: 10.1073/pnas.79.18.5708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. van den Pol A. N., di Porzio U., Rutishauser U. Growth cone localization of neural cell adhesion molecule on central nervous system neurons in vitro. J Cell Biol. 1986 Jun;102(6):2281–2294. doi: 10.1083/jcb.102.6.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES