Abstract
Large vesicles (5-10-micron in diameter) were formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera and digital image processor. When such vesicles contained a fluorescent phosphatidic acid (PA) and were exposed to 2 mM CaCl2 or 0.5 mM PrCl3, it was possible to visualize PA-enriched domains within the vesicles. Calcium-induced domain formation was reversible in the presence of 4 mM EGTA. Vesicles were formed containing fluorescent PA on either the inner or outer leaflet of the bilayer and the patching and dissolution of patching were studied under conditions where calcium was present on the outside of the vesicle and where calcium was distributed across the bilayer. In addition, vesicles were formed with two different fluorescent PA's, one on the inner leaflet and a different one on the outer leaflet of the bilayer. The results of the experiments show that in vesicles formed primarily with naturally occurring phospholipids such as egg phosphatidylcholine or brain phosphatidylethanolamine, there was no coordinate action of the two leaflets of the bilayer. An exception to this was found, however, if the vesicles were formed in the presence of primarily dioleoyl phospholipids (greater than 95 mol %). In these vesicles there was a coordinate or coupled response to calcium by the two leaflets of the bilayer. In most cases, however, the two leaflets of the bilayer showed independent or uncoupled domain formation.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bearer E. L., Friend D. S. Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm. J Cell Biol. 1982 Mar;92(3):604–615. doi: 10.1083/jcb.92.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chauhan A., Chauhan V. P., Brockerhoff H. Effect of cholesterol on Ca2+-induced aggregation of liposomes and calcium diphosphatidate membrane traversal. Biochemistry. 1986 Apr 8;25(7):1569–1573. doi: 10.1021/bi00355a017. [DOI] [PubMed] [Google Scholar]
- Comfurius P., Zwaal R. F. The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta. 1977 Jul 20;488(1):36–42. doi: 10.1016/0005-2760(77)90120-5. [DOI] [PubMed] [Google Scholar]
- Darszon A., Vandenberg C. A., Schönfeld M., Ellisman M. H., Spitzer N. C., Montal M. Reassembly of protein-lipid complexes into large bilayer vesicles: perspectives for membrane reconstitution. Proc Natl Acad Sci U S A. 1980 Jan;77(1):239–243. doi: 10.1073/pnas.77.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denkins Y. M., Schroit A. J. Phosphatidylserine decarboxylase: generation of asymmetric vesicles and determination of the transbilayer distribution of fluorescent phosphatidylserine in model membrane systems. Biochim Biophys Acta. 1986 Nov 17;862(2):343–351. doi: 10.1016/0005-2736(86)90237-3. [DOI] [PubMed] [Google Scholar]
- Haverstick D. M., Glaser M. Visualization of Ca2+-induced phospholipid domains. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4475–4479. doi: 10.1073/pnas.84.13.4475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt G. R., Tipping L. R. A H NMR study of the effects of metal ions, cholesterol and n-alkanes on phase transitions in the inner and outer monolayers of phospholipid vesicular membranes. Biochim Biophys Acta. 1978 Feb 21;507(2):242–261. doi: 10.1016/0005-2736(78)90420-0. [DOI] [PubMed] [Google Scholar]
- Karnovsky M. J., Kleinfeld A. M., Hoover R. L., Dawidowicz E. A., McIntyre D. E., Salzman E. A., Klausner R. D. Lipid domains in membranes. Ann N Y Acad Sci. 1982;401:61–75. doi: 10.1111/j.1749-6632.1982.tb25707.x. [DOI] [PubMed] [Google Scholar]
- Kremer J. M., Esker M. W., Pathmamanoharan C., Wiersema P. H. Vesicles of variable diameter prepared by a modified injection method. Biochemistry. 1977 Aug 23;16(17):3932–3935. doi: 10.1021/bi00636a033. [DOI] [PubMed] [Google Scholar]
- Nichols J. W., Pagano R. E. Kinetics of soluble lipid monomer diffusion between vesicles. Biochemistry. 1981 May 12;20(10):2783–2789. doi: 10.1021/bi00513a012. [DOI] [PubMed] [Google Scholar]
- Pagano R. E., Martin O. C., Schroit A. J., Struck D. K. Formation of asymmetric phospholipid membranes via spontaneous transfer of fluorescent lipid analogues between vesicle populations. Biochemistry. 1981 Aug 18;20(17):4920–4927. doi: 10.1021/bi00520a018. [DOI] [PubMed] [Google Scholar]
- Pagano R. E., Sleight R. G. Defining lipid transport pathways in animal cells. Science. 1985 Sep 13;229(4718):1051–1057. doi: 10.1126/science.4035344. [DOI] [PubMed] [Google Scholar]
- Pessin J. E., Glaser M. Budding of Rous sarcoma virus and vesicular stomatitis virus from localized lipid regions in the plasma membrane of chicken embryo fibroblasts. J Biol Chem. 1980 Oct 10;255(19):9044–9050. [PubMed] [Google Scholar]
- Schachter D., Cogan U., Abbott R. E. Asymmetry of lipid dynamics in human erythrocyte membranes studied with permanent fluorophores. Biochemistry. 1982 Apr 27;21(9):2146–2150. doi: 10.1021/bi00538a025. [DOI] [PubMed] [Google Scholar]
- Schmidt C. F., Barenholz Y., Huang C., Thompson T. E. Monolayer coupling in sphingomyelin bilayer systems. Nature. 1978 Feb 23;271(5647):775–777. doi: 10.1038/271775a0. [DOI] [PubMed] [Google Scholar]
- Seigneuret M., Zachowski A., Hermann A., Devaux P. F. Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry. 1984 Sep 11;23(19):4271–4275. doi: 10.1021/bi00314a002. [DOI] [PubMed] [Google Scholar]
- Severs N. J., Robenek H. Detection of microdomains in biomembranes. An appraisal of recent developments in freeze-fracture cytochemistry. Biochim Biophys Acta. 1983 Aug 11;737(3-4):373–408. doi: 10.1016/0304-4157(83)90007-2. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J Cell Biol. 1976 Jul;70(1):247–251. doi: 10.1083/jcb.70.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shukla S. D., Hanahan D. J. Identification of domains of phosphatidylcholine in human erythrocyte plasma membranes. Differential action of acidic and basic phospholipases A2 from Agkistrodon halys blomhoffii. J Biol Chem. 1982 Mar 25;257(6):2908–2911. [PubMed] [Google Scholar]
- Sillerud L. O., Barnett R. E. Lack of transbilayer coupling in phase transitions of phosphatidylcholine vesicles. Biochemistry. 1982 Apr 13;21(8):1756–1760. doi: 10.1021/bi00537a009. [DOI] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Sweet W. D., Wood W. G., Schroeder F. Charged anesthetics selectively alter plasma membrane order. Biochemistry. 1987 May 19;26(10):2828–2835. doi: 10.1021/bi00384a026. [DOI] [PubMed] [Google Scholar]
- Tanaka K. I., Ohnishi S. Heterogeneity in the fluidity of intact erythrocyte membrane and its homogenization upon hemolysis. Biochim Biophys Acta. 1976 Mar 5;426(2):218–231. doi: 10.1016/0005-2736(76)90333-3. [DOI] [PubMed] [Google Scholar]
- Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
- Williamson P., Bateman J., Kozarsky K., Mattocks K., Hermanowicz N., Choe H. R., Schlegel R. A. Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell. 1982 Oct;30(3):725–733. doi: 10.1016/0092-8674(82)90277-x. [DOI] [PubMed] [Google Scholar]
- Wisnieski B. J., Iwata K. K. Electron spin resonance evidence for vertical asymmetry in animal cell membranes. Biochemistry. 1977 Apr 5;16(7):1321–1326. doi: 10.1021/bi00626a013. [DOI] [PubMed] [Google Scholar]
- Wolf D. E., Kinsey W., Lennarz W., Edidin M. Changes in the organization of the sea urchin egg plasma membrane upon fertilization: indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev Biol. 1981 Jan 15;81(1):133–138. doi: 10.1016/0012-1606(81)90355-9. [DOI] [PubMed] [Google Scholar]