Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Oct;170(10):4748–4756. doi: 10.1128/jb.170.10.4748-4756.1988

Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants.

H C Huang 1, R Schuurink 1, T P Denny 1, M M Atkinson 1, C J Baker 1, I Yucel 1, S W Hutcheson 1, A Collmer 1
PMCID: PMC211517  PMID: 3139635

Abstract

A cosmid clone isolated from a genomic library of Pseudomonas syringae pv. syringae 61 restored to all Tn5 mutants of this strain studied the ability to elicit the hypersensitive response (HR) in tobacco. Cosmid pHIR11 also enabled Escherichia coli TB1 to elicit an HR-like reaction when high levels of inoculum (10(9) cells per ml) were infiltrated into tobacco leaves. The cosmid, which contains a 31-kilobase DNA insert, was mobilized by triparental matings into Pseudomonas fluorescens 55 (a nonpathogen that normally causes no plant reactions), P. syringae pv. syringae 226 (a tomato pathogen that causes the HR in tobacco), and P. syringae pv. tabaci (a tobacco pathogen that causes the HR in tomato). The plant reaction phenotypes of all of the transconjugants were altered. P. fluorescens(pHIR11) caused the HR in tobacco and tomato leaves and stimulated an apparent proton influx in suspension-cultured tobacco cells that was indistinguishable from the proton influx caused by incompatible pathogenic pseudomonads. P. syringae pv. tabaci(pHIR11) and P. syringae pv. syringae 226(pHIR11) elicited the HR rather than disease symptoms on their respective hosts and were no longer pathogenic. pHIR11 was mutagenized with TnphoA (Tn5 IS50L::phoA). One randomly chosen mutant, pHIR11-18, no longer conferred the HR phenotype to P. fluorescens. The mutation was marker-exchanged into the genomes of P. syringae pv. syringae strains 61 and 226. The TnphoA insertions in the two pseudomonads abolished their ability to elicit any plant reactions in all plants tested. The results indicate that a relatively small portion of the P. syringae genome is sufficient for the elicitation of plant reactions.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. M., Huang J. S., Knopp J. A. The Hypersensitive Reaction of Tobacco to Pseudomonas syringae pv. pisi: Activation of a Plasmalemma K/H Exchange Mechanism. Plant Physiol. 1985 Nov;79(3):843–847. doi: 10.1104/pp.79.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cuppels D. A. Generation and Characterization of Tn5 Insertion Mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol. 1986 Feb;51(2):323–327. doi: 10.1128/aem.51.2.323-327.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  5. KLEMENT Z. RAPID DETECTION OF THE PATHOGENICITY OF PHYTOPATHOGENIC PSEUDOMONADS. Nature. 1963 Jul 20;199:299–300. doi: 10.1038/199299b0. [DOI] [PubMed] [Google Scholar]
  6. Lindgren P. B., Peet R. C., Panopoulos N. J. Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J Bacteriol. 1986 Nov;168(2):512–522. doi: 10.1128/jb.168.2.512-522.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maas R. An improved colony hybridization method with significantly increased sensitivity for detection of single genes. Plasmid. 1983 Nov;10(3):296–298. doi: 10.1016/0147-619x(83)90045-8. [DOI] [PubMed] [Google Scholar]
  8. Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Niepold F., Anderson D., Mills D. Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. Proc Natl Acad Sci U S A. 1985 Jan;82(2):406–410. doi: 10.1073/pnas.82.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Quigley N. B., Reeves P. R. Chloramphenicol resistance cloning vector based on pUC9. Plasmid. 1987 Jan;17(1):54–57. doi: 10.1016/0147-619x(87)90008-4. [DOI] [PubMed] [Google Scholar]
  11. Staskawicz B. J., Dahlbeck D., Keen N. T. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6024–6028. doi: 10.1073/pnas.81.19.6024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Staskawicz B., Dahlbeck D., Keen N., Napoli C. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987 Dec;169(12):5789–5794. doi: 10.1128/jb.169.12.5789-5794.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES