Abstract
Agrin, a protein extracted from the electric organ of Torpedo californica, induces the formation of specializations on cultured chick myotubes that resemble the postsynaptic apparatus at the neuromuscular junction. The aim of the studies reported here was to characterize the effects of agrin on the distribution of acetylcholine receptors (AChRs) and cholinesterase as a step toward determining agrin's mechanism of action. When agrin was added to the medium bathing chick myotubes small (less than 4 micron 2) aggregates of AChRs began to appear within 2 h and increased rapidly in number until 4 h. Over the next 12-20 h the number of aggregates per myotube decreased as the mean size of each aggregate increased to approximately 15 micron 2. The accumulation of AChRs into agrin-induced aggregates occurred primarily by lateral migration of AChRs already in the myotube plasma membrane at the time agrin was added to the cultures. Aggregates of AChRs and cholinesterase remained as long as agrin was present in the medium; if agrin was removed the number of aggregates declined slowly. The formation and maintenance of agrin-induced AChR aggregates required Ca++, Co++ and Mn++ inhibited agrin-induced AChR aggregation and increased the rate of aggregate dispersal. Mg++ and Sr++ could not substitute for Ca++. Agrin- induced receptor aggregation also was inhibited by phorbol 12-myristate 13-acetate, an activator of protein kinase C, and by inhibitors of energy metabolism. The similarities between agrin's effects on cultured myotubes and events that occur during formation of neuromuscular junctions support the hypothesis that axon terminals release molecules similar to agrin that induce the differentiation of the postsynaptic apparatus.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony D. T., Schuetze S. M., Rubin L. L. Transformation by Rous sarcoma virus prevents acetylcholine receptor clustering on cultured chicken muscle fibers. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2265–2269. doi: 10.1073/pnas.81.7.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauer H. C., Daniels M. P., Pudimat P. A., Jacques L., Sugiyama H., Christian C. N. Characterization and partial purification of a neuronal factor which increases acetylcholine receptor aggregation on cultured muscle cells. Brain Res. 1981 Mar 30;209(2):395–404. doi: 10.1016/0006-8993(81)90161-x. [DOI] [PubMed] [Google Scholar]
- Bloch R. J. Acetylcholine receptor clustering in rat myotubes: requirement for CA2+ and effects of drugs which depolymerize microtubules. J Neurosci. 1983 Dec;3(12):2670–2680. doi: 10.1523/JNEUROSCI.03-12-02670.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Geiger B. The localization of acetylcholine receptor clusters in areas of cell-substrate contact in cultures of rat myotubes. Cell. 1980 Aug;21(1):25–35. doi: 10.1016/0092-8674(80)90111-7. [DOI] [PubMed] [Google Scholar]
- Bloch R. J., Steinbach J. H. Reversible loss of acetylcholine receptor clusters at the developing rat neuromuscular junction. Dev Biol. 1981 Jan 30;81(2):386–391. doi: 10.1016/0012-1606(81)90305-5. [DOI] [PubMed] [Google Scholar]
- Bruner J. M., Bursztajn S. Acetylcholine receptor clusters are associated with nuclei in rat myotubes. Dev Biol. 1986 May;115(1):35–43. doi: 10.1016/0012-1606(86)90225-3. [DOI] [PubMed] [Google Scholar]
- Buc-Caron M. H., Nystrom P., Fischbach G. D. Induction of acetylcholine receptor synthesis and aggregation: partial purification of low-molecular-weight activity. Dev Biol. 1983 Feb;95(2):378–386. doi: 10.1016/0012-1606(83)90039-8. [DOI] [PubMed] [Google Scholar]
- Burrage T. G., Lentz T. L. Ultrastructural characterization of surface specializations containing high-density acetylcholine receptors on embryonic chick myotubes in vivo and in vitro. Dev Biol. 1981 Jul 30;85(2):267–286. doi: 10.1016/0012-1606(81)90259-1. [DOI] [PubMed] [Google Scholar]
- Bursztajn S., Fischbach G. D. Evidence that coated vesicles transport acetylcholine receptors to the surface membrane of chick myotubes. J Cell Biol. 1984 Feb;98(2):498–506. doi: 10.1083/jcb.98.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu A. Y., Sanes J. R. Development of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle. Dev Biol. 1984 Jun;103(2):456–467. doi: 10.1016/0012-1606(84)90333-6. [DOI] [PubMed] [Google Scholar]
- Cohen M. W. The development of neuromuscular connexions in the presence of D-tubocurarine. Brain Res. 1972 Jun 22;41(2):457–463. doi: 10.1016/0006-8993(72)90515-x. [DOI] [PubMed] [Google Scholar]
- Cohen S. A., Pumplin D. W. Clusters of intramembrane particles associated with binding sites for alpha-bungarotoxin in cultured chick myotubes. J Cell Biol. 1979 Aug;82(2):494–516. doi: 10.1083/jcb.82.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly J. A. Role of the cytoskeleton in the formation, stabilization, and removal of acetylcholine receptor clusters in cultured muscle cells. J Cell Biol. 1984 Jul;99(1 Pt 1):148–154. doi: 10.1083/jcb.99.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly J. A., St John P. A., Fischbach G. D. Extracts of electric lobe and electric organ from Torpedo californica increase the total number as well as the number of aggregates of chick myotube acetylcholine receptors. J Neurosci. 1982 Sep;2(9):1207–1213. doi: 10.1523/JNEUROSCI.02-09-01207.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couteaux R., Pécot-Dechavassine Particularités structurales du sarcoplasme sous-neural. C R Acad Sci Hebd Seances Acad Sci D. 1968 Jan 3;266(1):8–10. [PubMed] [Google Scholar]
- Croop J., Dubyak G., Toyama Y., Dlugosz A., Scarpa A., Holtzer H. Effects of 12-O-tetradecanoyl-phorbol-13-acetate on Myofibril integrity and Ca2+ content in developing myotubes. Dev Biol. 1982 Feb;89(2):460–474. doi: 10.1016/0012-1606(82)90334-7. [DOI] [PubMed] [Google Scholar]
- Davey D. F., Cohen M. W. Localization of acetylcholine receptors and cholinesterase on nerve-contacted and noncontacted muscle cells grown in the presence of agents that block action potentials. J Neurosci. 1986 Mar;6(3):673–680. doi: 10.1523/JNEUROSCI.06-03-00673.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis M. J. Development of the neuromuscular junction: inductive interactions between cells. Annu Rev Neurosci. 1981;4:43–68. doi: 10.1146/annurev.ne.04.030181.000355. [DOI] [PubMed] [Google Scholar]
- Devreotes P. N., Fambrough D. M. Acetylcholine receptor turnover in membranes of developing muscle fibers. J Cell Biol. 1975 May;65(2):335–358. doi: 10.1083/jcb.65.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englander L. L., Rubin L. L. Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J Cell Biol. 1987 Jan;104(1):87–95. doi: 10.1083/jcb.104.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fallon J. R., Nitkin R. M., Reist N. E., Wallace B. G., McMahan U. J. Acetylcholine receptor-aggregating factor is similar to molecules concentrated at neuromuscular junctions. Nature. 1985 Jun 13;315(6020):571–574. doi: 10.1038/315571a0. [DOI] [PubMed] [Google Scholar]
- Fischbach G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol. 1972 Jun;28(2):407–429. doi: 10.1016/0012-1606(72)90023-1. [DOI] [PubMed] [Google Scholar]
- Godfrey E. W., Nitkin R. M., Wallace B. G., Rubin L. L., McMahan U. J. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J Cell Biol. 1984 Aug;99(2):615–627. doi: 10.1083/jcb.99.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson L. P., Smith M. A., Spitzer N. C. The absence of calcium blocks impulse-evoked release of acetylcholine but not de novo formation of functional neuromuscular synaptic contacts in culture. J Neurosci. 1984 Dec;4(12):3140–3150. doi: 10.1523/JNEUROSCI.04-12-03140.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Heuser J. E. Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. J Neurocytol. 1982 Jun;11(3):487–510. doi: 10.1007/BF01257990. [DOI] [PubMed] [Google Scholar]
- Jessell T. M., Siegel R. E., Fischbach G. D. Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5397–5401. doi: 10.1073/pnas.76.10.5397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KARNOVSKY M. J. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY. J Cell Biol. 1964 Nov;23:217–232. doi: 10.1083/jcb.23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalcheim C., Vogel Z., Duksin D. Embryonic brain extract induces collagen biosynthesis in cultured muscle cells: involvement in acetylcholine receptor aggregation. Proc Natl Acad Sci U S A. 1982 May;79(10):3077–3081. doi: 10.1073/pnas.79.10.3077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILEDI R. Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres. J Physiol. 1960 Apr;151:24–30. [PMC free article] [PubMed] [Google Scholar]
- Markelonis G. J., Oh T. H., Eldefrawi M. E., Guth L. Sciatin: a myotrophic protein increases the number of acetylcholine receptors and receptor clusters in cultured skeletal muscle. Dev Biol. 1982 Feb;89(2):353–361. doi: 10.1016/0012-1606(82)90324-4. [DOI] [PubMed] [Google Scholar]
- McMahan U. J., Slater C. R. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J Cell Biol. 1984 Apr;98(4):1453–1473. doi: 10.1083/jcb.98.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merlie J. P., Sanes J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature. 1985 Sep 5;317(6032):66–68. doi: 10.1038/317066a0. [DOI] [PubMed] [Google Scholar]
- Miskin R., Easton T. G., Maelicke A., Reich E. Metabolism of acetylcholine receptor in chick embryo muscle cells: effects of RSV and PMA. Cell. 1978 Dec;15(4):1287–1300. doi: 10.1016/0092-8674(78)90054-5. [DOI] [PubMed] [Google Scholar]
- Moss B. L., Schuetze S. M. Development of rat soleus endplate membrane following denervation at birth. J Neurobiol. 1987 Jan;18(1):101–118. doi: 10.1002/neu.480180108. [DOI] [PubMed] [Google Scholar]
- New H. V., Mudge A. W. Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. 1986 Oct 30-Nov 5Nature. 323(6091):809–811. doi: 10.1038/323809a0. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Nitkin R. M., Smith M. A., Magill C., Fallon J. R., Yao Y. M., Wallace B. G., McMahan U. J. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol. 1987 Dec;105(6 Pt 1):2471–2478. doi: 10.1083/jcb.105.6.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nitkin R. M., Wallace B. G., Spira M. E., Godfrey E. W., McMahan U. J. Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):653–665. doi: 10.1101/sqb.1983.048.01.069. [DOI] [PubMed] [Google Scholar]
- Obata K. Development of neuromuscular transmission in culture with a variety of neurons and in the presence of cholinergic substances and tetrodotoxin. Brain Res. 1977 Jan 1;119(1):141–153. doi: 10.1016/0006-8993(77)90096-8. [DOI] [PubMed] [Google Scholar]
- Oh T. H., Markelonis G. J. Chicken serum transferrin duplicates the myotrophic effects of sciatin on cultured muscle cells. J Neurosci Res. 1982;8(2-3):535–545. doi: 10.1002/jnr.490080239. [DOI] [PubMed] [Google Scholar]
- Olek A. J., Krikorian J. G., Daniels M. P. Early stages in the formation and stabilization of acetylcholine receptor aggregates on cultured myotubes: sensitivity to temperature and azide. Dev Biol. 1986 Sep;117(1):24–34. doi: 10.1016/0012-1606(86)90344-1. [DOI] [PubMed] [Google Scholar]
- Olek A. J., Ling A., Daniels M. P. Development of ultrastructural specializations during the formation of acetylcholine receptor aggregates on cultured myotubes. J Neurosci. 1986 Feb;6(2):487–497. doi: 10.1523/JNEUROSCI.06-02-00487.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olek A. J., Pudimat P. A., Daniels M. P. Direct observation of the rapid aggregation of acetylcholine receptors on identified cultured myotubes after exposure to embryonic brain extract. Cell. 1983 Aug;34(1):255–264. doi: 10.1016/0092-8674(83)90156-3. [DOI] [PubMed] [Google Scholar]
- Peng H. B., Cheng P. C. Formation of postsynaptic specializations induced by latex beads in cultured muscle cells. J Neurosci. 1982 Dec;2(12):1760–1774. doi: 10.1523/JNEUROSCI.02-12-01760.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng H. B., Nakajima Y. Membrane particle aggregates in innervated and noninnervated cultures of Xenopus embryonic muscle cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):500–504. doi: 10.1073/pnas.75.1.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng H. B. Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters. J Cell Biol. 1984 Feb;98(2):550–557. doi: 10.1083/jcb.98.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podleski T. R., Axelrod D., Ravdin P., Greenberg I., Johnson M. M., Salpeter M. M. Nerve extract induces increase and redistribution of acetylcholine receptors on cloned muscle cells. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2035–2039. doi: 10.1073/pnas.75.4.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prozialeck W. C., Weiss B. Inhibition of calmodulin by phenothiazines and related drugs: structure-activity relationships. J Pharmacol Exp Ther. 1982 Sep;222(3):509–516. [PubMed] [Google Scholar]
- Reist N. E., Magill C., McMahan U. J. Agrin-like molecules at synaptic sites in normal, denervated, and damaged skeletal muscles. J Cell Biol. 1987 Dec;105(6 Pt 1):2457–2469. doi: 10.1083/jcb.105.6.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Role L. W., Matossian V. R., O'Brien R. J., Fischbach G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J Neurosci. 1985 Aug;5(8):2197–2204. doi: 10.1523/JNEUROSCI.05-08-02197.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotundo R. L., Fambrough D. M. Synthesis, transport and fate of acetylcholinesterase in cultured chick embryos muscle cells. Cell. 1980 Nov;22(2 Pt 2):583–594. doi: 10.1016/0092-8674(80)90368-2. [DOI] [PubMed] [Google Scholar]
- Rotundo R. L. Purification and properties of the membrane-bound form of acetylcholinesterase from chicken brain. Evidence for two distinct polypeptide chains. J Biol Chem. 1984 Nov 10;259(21):13186–13194. [PubMed] [Google Scholar]
- Salpeter M. M., Spanton S., Holley K., Podleski T. R. Brain extract causes acetylcholine receptor redistribution which mimics some early events at developing neuromuscular junctions. J Cell Biol. 1982 May;93(2):417–425. doi: 10.1083/jcb.93.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater C. R. Neural influence on the postnatal changes in acetylcholine receptor distribution at nerve-muscle junctions in the mouse. Dev Biol. 1982 Nov;94(1):23–30. doi: 10.1016/0012-1606(82)90064-1. [DOI] [PubMed] [Google Scholar]
- Smith M. A., Yao Y. M., Reist N. E., Magill C., Wallace B. G., McMahan U. J. Identification of agrin in electric organ extracts and localization of agrin-like molecules in muscle and central nervous system. J Exp Biol. 1987 Sep;132:223–230. doi: 10.1242/jeb.132.1.223. [DOI] [PubMed] [Google Scholar]
- Steinbach J. H. Neuromuscular junctions and alpha-bungarotoxin-binding sites in denervated and contralateral cat skeletal muscles. J Physiol. 1981;313:513–528. doi: 10.1113/jphysiol.1981.sp013679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbach J. H. Role of muscle activity in nerve-muscle interaction in vitro. Nature. 1974 Mar 1;248(5443):70–71. doi: 10.1038/248070a0. [DOI] [PubMed] [Google Scholar]
- Usdin T. B., Fischbach G. D. Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes. J Cell Biol. 1986 Aug;103(2):493–507. doi: 10.1083/jcb.103.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. G. Aggregating factor from Torpedo electric organ induces patches containing acetylcholine receptors, acetylcholinesterase, and butyrylcholinesterase on cultured myotubes. J Cell Biol. 1986 Mar;102(3):783–794. doi: 10.1083/jcb.102.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. G., Nitkin R. M., Reist N. E., Fallon J. R., Moayeri N. N., McMahan U. J. Aggregates of acetylcholinesterase induced by acetylcholine receptor-aggregating factor. Nature. 1985 Jun 13;315(6020):574–577. doi: 10.1038/315574a0. [DOI] [PubMed] [Google Scholar]
- Weinberg C. B., Hall Z. W. Junctional form of acetylcholinesterase restored at nerve-free endplates. Dev Biol. 1979 Feb;68(2):631–635. doi: 10.1016/0012-1606(79)90233-1. [DOI] [PubMed] [Google Scholar]
- Yee A. G., Fischbach G. D., Karnovsky M. J. Clusters of intramembranous particles on cultured myotubes at sites that are highly sensitive to acetylcholine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):3004–3008. doi: 10.1073/pnas.75.6.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziskind-Conhaim L., Geffen I., Hall Z. W. Redistribution of acetylcholine receptors on developing rat myotubes. J Neurosci. 1984 Sep;4(9):2346–2349. doi: 10.1523/JNEUROSCI.04-09-02346.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]