Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jul 1;107(1):241–255. doi: 10.1083/jcb.107.1.241

Communication compartments in the gastrulating mouse embryo

PMCID: PMC2115182  PMID: 3392100

Abstract

We characterized the pattern of gap junctional communication in the 7.5- d mouse embryo (at the primitive streak or gastrulation stage). First we examined the pattern of dye coupling by injecting the fluorescent tracers, Lucifer Yellow or carboxyfluorescein, and monitoring the extent of dye spread. These studies revealed that cells within all three germ layers are well coupled, as the injected dye usually spread rapidly from the site of impalement into the neighboring cells. The dye spread, however, appeared to be restricted at specific regions of the embryo. Further thick section histological analysis revealed little or no dye transfer between germ layers, indicating that each is a separate communication compartment. The pattern of dye movement within the embryonic ectoderm and mesoderm further suggested that cells in each of these germ layers may be subdivided into smaller communication compartments, the most striking of which are a number of "box-like" domains. Such compartments, unlike the restrictions observed between germ layers, are consistently only partially restrictive. In light of these results, we further monitored ionic coupling to determine if some coupling might nevertheless persist between germ layers. For these studies, Lucifer Yellow was coinjected while ionic coupling was monitored. The injected Lucifer Yellow facilitated the identification of the impalement sites, both in the live specimen and in thick sections in the subsequent histological analysis. By using this approach, all three germ layers were shown to be ionically coupled, indicating that gap junctional communication is maintained across the otherwise dye-uncoupled "germ layer compartments." Thus our results demonstrate that partially restrictive communication compartments are associated with the delamination of germ layers in the gastrulating mouse embryo. The spatial distribution of these compartments are consistent with a possible role in the underlying development.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batten B. E., Haar J. L. Fine structural differentiation of germ layers in the mouse at the time of mesoderm formation. Anat Rec. 1979 May;194(1):125–141. doi: 10.1002/ar.1091940109. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. V., Spira M. E., Spray D. C. Permeability of gap junctions between embryonic cells of Fundulus: a reevaluation. Dev Biol. 1978 Jul;65(1):114–125. doi: 10.1016/0012-1606(78)90184-7. [DOI] [PubMed] [Google Scholar]
  3. Blackshaw S. E., Warner A. E. Low resistance junctions between mesoderm cells during development of trunk muscles. J Physiol. 1976 Feb;255(1):209–230. doi: 10.1113/jphysiol.1976.sp011276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caveney S. The role of gap junctions in development. Annu Rev Physiol. 1985;47:319–335. doi: 10.1146/annurev.ph.47.030185.001535. [DOI] [PubMed] [Google Scholar]
  5. Crick F. H., Lawrence P. A. Compartments and polyclones in insect development. Science. 1975 Aug 1;189(4200):340–347. doi: 10.1126/science.806966. [DOI] [PubMed] [Google Scholar]
  6. Franke W. W., Grund C., Jackson B. W., Illmensee K. Formation of cytoskeletal elements during mouse embryogenesis. IV. Ultrastructure of primary mesenchymal cells and their cell-cell interactions. Differentiation. 1983;25(2):121–141. [PubMed] [Google Scholar]
  7. Gilula N. B., Epstein M. L., Beers W. H. Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J Cell Biol. 1978 Jul;78(1):58–75. doi: 10.1083/jcb.78.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guthrie S. C. Patterns of junctional communication in the early amphibian embryo. Nature. 1984 Sep 13;311(5982):149–151. doi: 10.1038/311149a0. [DOI] [PubMed] [Google Scholar]
  9. Kimmel C. B., Spray D. C., Bennett M. V. Developmental uncoupling between blastoderm and yolk cell in the embryo of the teleost Fundulus. Dev Biol. 1984 Apr;102(2):483–487. doi: 10.1016/0012-1606(84)90213-6. [DOI] [PubMed] [Google Scholar]
  10. Lo C. W., Gilula N. B. Gap junctional communication in the post-implantation mouse embryo. Cell. 1979 Oct;18(2):411–422. doi: 10.1016/0092-8674(79)90060-6. [DOI] [PubMed] [Google Scholar]
  11. Lo C. W., Gilula N. B. Gap junctional communication in the preimplantation mouse embryo. Cell. 1979 Oct;18(2):399–409. doi: 10.1016/0092-8674(79)90059-x. [DOI] [PubMed] [Google Scholar]
  12. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  13. Michalke W. A gradient of diffusible substance in a monolayer of cultured cells. J Membr Biol. 1977 May 6;33(1-2):1–20. doi: 10.1007/BF01869509. [DOI] [PubMed] [Google Scholar]
  14. Morriss-Kay G. M. Growth and development of pattern in the cranial neural epithelium of rat embryos during neurulation. J Embryol Exp Morphol. 1981 Oct;65 (Suppl):225–241. [PubMed] [Google Scholar]
  15. Potter D. D., Furshpan E. J., Lennox E. S. Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci U S A. 1966 Feb;55(2):328–336. doi: 10.1073/pnas.55.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Serras F., van den Biggelaar J. A. Is a mosaic embryo also a mosaic of communication compartments? Dev Biol. 1987 Mar;120(1):132–138. doi: 10.1016/0012-1606(87)90111-4. [DOI] [PubMed] [Google Scholar]
  17. Sheridan J. D. Electrophysiological evidence for low-resistance intercellular junctions in the early chick embryo. J Cell Biol. 1968 Jun;37(3):650–659. doi: 10.1083/jcb.37.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Slack C., Palmer J. F. The permeability of intercellular junctions in the early embryo of Xenopus laevis, studied with a fluorescent tracer. Exp Cell Res. 1969 Jun;55(3):416–419. doi: 10.1016/0014-4827(69)90577-1. [DOI] [PubMed] [Google Scholar]
  19. Solursh M., Revel J. P. A scanning electron microscope study of cell shape and cell appendages in the primitive streak region of the rat and chick embryo. Differentiation. 1978;11(3):185–190. doi: 10.1111/j.1432-0436.1978.tb00983.x. [DOI] [PubMed] [Google Scholar]
  20. Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
  21. Warner A. E., Lawrence P. A. Permeability of gap junctions at the segmental border in insect epidermis. Cell. 1982 Feb;28(2):243–252. doi: 10.1016/0092-8674(82)90342-7. [DOI] [PubMed] [Google Scholar]
  22. Warner A. E. The electrical properties of the ectoderm in the amphibian embryo during induction and early development of the nervous system. J Physiol. 1973 Nov;235(1):267–286. doi: 10.1113/jphysiol.1973.sp010387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weir M. P., Lo C. W. Gap junctional communication compartments in the Drosophila wing disk. Proc Natl Acad Sci U S A. 1982 May;79(10):3232–3235. doi: 10.1073/pnas.79.10.3232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weir M. P., Lo C. W. Gap-junctional communication compartments in the Drosophila wing imaginal disk. Dev Biol. 1984 Mar;102(1):130–146. doi: 10.1016/0012-1606(84)90181-7. [DOI] [PubMed] [Google Scholar]
  25. Wolpert L. Positional information and pattern formation. Curr Top Dev Biol. 1971;6(6):183–224. doi: 10.1016/s0070-2153(08)60641-9. [DOI] [PubMed] [Google Scholar]
  26. de Laat S. W., Tertoolen L. G., Dorresteijn A. W., van den Biggelaar J. A. Intercellular communication patterns are involved in cell determination in early molluscan development. Nature. 1980 Oct 9;287(5782):546–548. doi: 10.1038/287546a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES