Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jul 1;107(1):363–372. doi: 10.1083/jcb.107.1.363

Biochemical and functional responses stimulated by platelet-activating factor in murine peritoneal macrophages [published erratum appears in J Cell Biol 1988 Sep;107(3):following 1260]

PMCID: PMC2115187  PMID: 2839520

Abstract

Platelet-activating factor (PAF) is a potent stimulant of leukocytes, including macrophages. To analyze the mechanisms of its effects upon macrophages, we determined whether macrophages bear specific surface receptors for PAF. By competitive radioactive binding assays, we determined two classes of specific receptors to be present on purified membranes derived from murine peritoneal macrophages (one having a Kd of approximately 1 X 10(-10) M and one a Kd of approximately 2 X 10(-9) M). When the macrophages were incubated with PAF, rapid formation of several inositol phosphates including inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate were observed. PAF also elevated intracellular levels of calcium to 290 +/- 27% of basal levels which were 82.7 +/- 12 nM. Increases in calcium were observed first in submembranous areas of the macrophages. PAF also led to increases of 1,2-diacylglycerol of approximately 200 pmol/10(7) cells. A characteristic pattern of enhanced protein phosphorylation, similar to that initiated by both phorbol 12,13-myristate and lipopolysaccharide, was observed and involved enhanced phosphorylation of proteins of 28, 33, 67, and 103 kD. The half-maximal dose of PAF for initiating all the above effects was approximately 5 X 10(-9) M. PAF also initiated significant chemotaxis of the cells; the half-maximal dose for this effect was approximately 1 X 10(-11) M. Taken together, these observations suggest that murine mononuclear phagocytes bear specific membrane receptors for PAF and that addition of PAF leads to generation of break-down products of polyphosphoinositides, subsequent changes in intracellular calcium and protein phosphorylation, and chemotaxis.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev. 1986 Sep;38(3):227–272. [PubMed] [Google Scholar]
  2. Adams D. O., Hamilton T. A. Molecular transductional mechanisms by which IFN gamma and other signals regulate macrophage development. Immunol Rev. 1987 Jun;97:5–27. doi: 10.1111/j.1600-065x.1987.tb00514.x. [DOI] [PubMed] [Google Scholar]
  3. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  4. Aderem A. A., Cohen D. S., Wright S. D., Cohn Z. A. Bacterial lipopolysaccharides prime macrophages for enhanced release of arachidonic acid metabolites. J Exp Med. 1986 Jul 1;164(1):165–179. doi: 10.1084/jem.164.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arslan P., Di Virgilio F., Beltrame M., Tsien R. Y., Pozzan T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem. 1985 Mar 10;260(5):2719–2727. [PubMed] [Google Scholar]
  6. Bachelet M., Masliah J., Vargaftig B. B., Bereziat G., Colard O. Changes induced by PAF-acether in diacyl and ether phospholipids from guinea-pig alveolar macrophages. Biochim Biophys Acta. 1986 Sep 12;878(2):177–183. doi: 10.1016/0005-2760(86)90144-x. [DOI] [PubMed] [Google Scholar]
  7. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Braquet P., Touqui L., Shen T. Y., Vargaftig B. B. Perspectives in platelet-activating factor research. Pharmacol Rev. 1987 Jun;39(2):97–145. [PubMed] [Google Scholar]
  9. Cobbold P. H., Rink T. J. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J. 1987 Dec 1;248(2):313–328. doi: 10.1042/bj2480313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Conrad G. W., Rink T. J. Platelet activating factor raises intracellular calcium ion concentration in macrophages. J Cell Biol. 1986 Aug;103(2):439–450. doi: 10.1083/jcb.103.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Di Virgilio F., Steinberg T. H., Swanson J. A., Silverstein S. C. Fura-2 secretion and sequestration in macrophages. A blocker of organic anion transport reveals that these processes occur via a membrane transport system for organic anions. J Immunol. 1988 Feb 1;140(3):915–920. [PubMed] [Google Scholar]
  12. Dillon S. B., Murray J. J., Verghese M. W., Snyderman R. Regulation of inositol phosphate metabolism in chemoattractant-stimulated human polymorphonuclear leukocytes. Definition of distinct dephosphorylation pathways for IP3 isomers. J Biol Chem. 1987 Aug 25;262(24):11546–11552. [PubMed] [Google Scholar]
  13. Falk W., Goodwin R. H., Jr, Leonard E. J. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods. 1980;33(3):239–247. doi: 10.1016/0022-1759(80)90211-2. [DOI] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Hall D. J., Stiles C. D. Platelet-derived growth factor-inducible genes respond differentially to at least two distinct intracellular second messengers. J Biol Chem. 1987 Nov 5;262(31):15302–15308. [PubMed] [Google Scholar]
  16. Hanahan D. J. Platelet activating factor: a biologically active phosphoglyceride. Annu Rev Biochem. 1986;55:483–509. doi: 10.1146/annurev.bi.55.070186.002411. [DOI] [PubMed] [Google Scholar]
  17. Hartung H. P. Acetyl glyceryl ether phosphorylcholine (platelet-activating factor) mediates heightened metabolic activity in macrophages. Studies on PGE, TXB2 and O2- production, spreading, and the influence of calmodulin-inhibitor W-7. FEBS Lett. 1983 Aug 22;160(1-2):209–212. doi: 10.1016/0014-5793(83)80968-5. [DOI] [PubMed] [Google Scholar]
  18. Hartung H. P., Parnham M. J., Winkelmann J., Englberger W., Hadding U. Platelet activating factor (PAF) induces the oxidative burst in macrophages. Int J Immunopharmacol. 1983;5(2):115–121. doi: 10.1016/0192-0561(83)90002-4. [DOI] [PubMed] [Google Scholar]
  19. Hayakawa T., Suzuki K., Suzuki S., Andrews P. C., Babior B. M. A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease. J Biol Chem. 1986 Jul 15;261(20):9109–9115. [PubMed] [Google Scholar]
  20. Hayashi H., Kudo I., Inoue K., Onozaki K., Tsushima S., Nomura H., Nojima S. Activation of guinea pig peritoneal macrophages by platelet activating factor (PAF) and its agonists. J Biochem. 1985 Jun;97(6):1737–1745. doi: 10.1093/oxfordjournals.jbchem.a135232. [DOI] [PubMed] [Google Scholar]
  21. Herman B., Roe M. W., Harris C., Wray B., Clemmons D. Platelet-derived growth factor-induced alterations in vinculin distribution in porcine vascular smooth muscle cells. Cell Motil Cytoskeleton. 1987;8(2):91–105. doi: 10.1002/cm.970080202. [DOI] [PubMed] [Google Scholar]
  22. Hwang S. B., Lam M. H., Pong S. S. Ionic and GTP regulation of binding of platelet-activating factor to receptors and platelet-activating factor-induced activation of GTPase in rabbit platelet membranes. J Biol Chem. 1986 Jan 15;261(2):532–537. [PubMed] [Google Scholar]
  23. Irvine R. F., Anggård E. E., Letcher A. J., Downes C. P. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J. 1985 Jul 15;229(2):505–511. doi: 10.1042/bj2290505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Irvine R. F., Letcher A. J., Heslop J. P., Berridge M. J. The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature. 1986 Apr 17;320(6063):631–634. doi: 10.1038/320631a0. [DOI] [PubMed] [Google Scholar]
  26. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Joseph S. K., Hansen C. A., Williamson J. R. Inositol 1,3,4,5-tetrakisphosphate increases the duration of the inositol 1,4,5-trisphosphate-mediated Ca2+ transient. FEBS Lett. 1987 Jul 13;219(1):125–129. doi: 10.1016/0014-5793(87)81203-6. [DOI] [PubMed] [Google Scholar]
  28. Kruskal B. A., Maxfield F. R. Cytosolic free calcium increases before and oscillates during frustrated phagocytosis in macrophages. J Cell Biol. 1987 Dec;105(6 Pt 1):2685–2693. doi: 10.1083/jcb.105.6.2685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Lefkowitz R. J., Stadel J. M., Caron M. G. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem. 1983;52:159–186. doi: 10.1146/annurev.bi.52.070183.001111. [DOI] [PubMed] [Google Scholar]
  31. Lemasters J. J., DiGuiseppi J., Nieminen A. L., Herman B. Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature. 1987 Jan 1;325(6099):78–81. doi: 10.1038/325078a0. [DOI] [PubMed] [Google Scholar]
  32. Leonard E. J., Skeel A. Effects of cell concentration on chemotactic responsiveness of mouse resident peritoneal macrophages. J Reticuloendothel Soc. 1981 Oct;30(4):271–282. [PubMed] [Google Scholar]
  33. Ng D. S., Wong K. GTP regulation of platelet-activating factor binding to human neutrophil membranes. Biochem Biophys Res Commun. 1986 Nov 26;141(1):353–359. doi: 10.1016/s0006-291x(86)80376-x. [DOI] [PubMed] [Google Scholar]
  34. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  35. Omann G. M., Allen R. A., Bokoch G. M., Painter R. G., Traynor A. E., Sklar L. A. Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev. 1987 Jan;67(1):285–322. doi: 10.1152/physrev.1987.67.1.285. [DOI] [PubMed] [Google Scholar]
  36. Pollock W. K., Rink T. J., Irvine R. F. Liberation of [3H]arachidonic acid and changes in cytosolic free calcium in fura-2-loaded human platelets stimulated by ionomycin and collagen. Biochem J. 1986 May 1;235(3):869–877. doi: 10.1042/bj2350869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
  38. Prpic V., Weiel J. E., Somers S. D., DiGuiseppi J., Gonias S. L., Pizzo S. V., Hamilton T. A., Herman B., Adams D. O. Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol. 1987 Jul 15;139(2):526–533. [PubMed] [Google Scholar]
  39. Smith C. D., Snyderman R. Guanine nucleotide regulatory proteins in receptor-mediated polyphosphoinositide hydrolysis in human leukocytes. Methods Enzymol. 1987;141:261–271. doi: 10.1016/0076-6879(87)41074-4. [DOI] [PubMed] [Google Scholar]
  40. Snyder F. Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated ether-linked choline-phospholipids. Med Res Rev. 1985 Jan-Mar;5(1):107–140. doi: 10.1002/med.2610050105. [DOI] [PubMed] [Google Scholar]
  41. Steinberg T. H., Newman A. S., Swanson J. A., Silverstein S. C. Macrophages possess probenecid-inhibitable organic anion transporters that remove fluorescent dyes from the cytoplasmic matrix. J Cell Biol. 1987 Dec;105(6 Pt 1):2695–2702. doi: 10.1083/jcb.105.6.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stewart S. J., Prpic V., Powers F. S., Bocckino S. B., Isaacks R. E., Exton J. H. Perturbation of the human T-cell antigen receptor-T3 complex leads to the production of inositol tetrakisphosphate: evidence for conversion from inositol trisphosphate. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6098–6102. doi: 10.1073/pnas.83.16.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Uhing R. J., Prpic V., Jiang H., Exton J. H. Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes. Roles of guanine nucleotides and calcium. J Biol Chem. 1986 Feb 15;261(5):2140–2146. [PubMed] [Google Scholar]
  44. Weiel J. E., Hamilton T. A., Adams D. O. LPS induces altered phosphate labeling of proteins in murine peritoneal macrophages. J Immunol. 1986 Apr 15;136(8):3012–3018. [PubMed] [Google Scholar]
  45. Williams D. A., Fogarty K. E., Tsien R. Y., Fay F. S. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature. 1985 Dec 12;318(6046):558–561. doi: 10.1038/318558a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES