Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jul 1;107(1):45–56. doi: 10.1083/jcb.107.1.45

Protein kinase activity associated with stored messenger ribonucleoprotein particles of Xenopus oocytes

PMCID: PMC2115189  PMID: 3392105

Abstract

As the oocytes of Xenopus laevis grow and develop they accumulate vast stores of mRNA for use during early embryogenesis. The stored mRNA is stabilized and may be prevented from being translated in oocytes by the binding of a defined set of oocyte-specific proteins to form messenger RNP (mRNP) particles. A key event in the interaction of protein with mRNA is the phosphorylation of those few polypeptides that bind directly to all classes of polyadenylated mRNA. In this study we show that the phosphorylating enzyme (protein kinase), in addition to its target phosphoproteins, is an integral component of the mRNP particles. This association extends through various stages in the formation and use of the mRNP particles. Examination of material from oocytes of an early developmental stage (early stage 1), when the level of accumulated mRNA is low, reveals an excess of protein particles free of RNA, sedimenting at 6-18 S, and containing protein kinase activity and mRNA-binding phosphoproteins. At stages of maximum rate of mRNA accumulation (stages 1 and 2), the phosphoproteins and kinase are found primarily in individual mRNP particles that sediment at 40-80 S. As ribosomes become abundant (stages 2 and 3), the mRNP particles tend to interact with ribosomal subunits, at least in vitro, to form blocked translation initiation complexes that sediment at 80-110 S. These results are compared with observation on stored mRNP in other developmental systems.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audet R. G., Goodchild J., Richter J. D. Eukaryotic initiation factor 4A stimulates translation in microinjected Xenopus oocytes. Dev Biol. 1987 May;121(1):58–68. doi: 10.1016/0012-1606(87)90138-2. [DOI] [PubMed] [Google Scholar]
  2. Auerbach S., Pederson T. Phosphorylation of messenger RNA-bound proteins in HeLa cells. Biochem Biophys Res Commun. 1975 Mar 3;63(1):149–156. doi: 10.1016/s0006-291x(75)80023-4. [DOI] [PubMed] [Google Scholar]
  3. Bag J., Hubley M., Sells B. A cytoplasmic ribonucleoprotein complex containing a small RNA inhibitor of protein synthesis. J Biol Chem. 1980 Aug 10;255(15):7055–7058. [PubMed] [Google Scholar]
  4. Capco D. G., Jeffrey W. R. Transient localizations of messenger RNA in Xenopus laevis oocytes. Dev Biol. 1982 Jan;89(1):1–12. doi: 10.1016/0012-1606(82)90288-3. [DOI] [PubMed] [Google Scholar]
  5. Cardelli J., Pitot H. C. Characterization of protein kinase activity associated with rat liver polysomal messenger ribonucleoprotein particles. Biochemistry. 1980 Jul 8;19(14):3164–3169. doi: 10.1021/bi00555a008. [DOI] [PubMed] [Google Scholar]
  6. Darnbrough C. H., Ford P. J. Identification in Xenopus laevis of a class of oocyte-specific proteins bound to messenger RNA. Eur J Biochem. 1981 Jan;113(3):415–424. doi: 10.1111/j.1432-1033.1981.tb05081.x. [DOI] [PubMed] [Google Scholar]
  7. Darnbrough C., Ford P. J. Cell-free translation of messenger RNA from oocytes of Xenopus laevis. Dev Biol. 1976 Jun;50(2):285–301. doi: 10.1016/0012-1606(76)90152-4. [DOI] [PubMed] [Google Scholar]
  8. Darnbrough C., Legon S., Hunt T., Jackson R. J. Initiation of protein synthesis: evidence for messenger RNA-independent binding of methionyl-transfer RNA to the 40 S ribosomal subunit. J Mol Biol. 1973 May 25;76(3):379–403. doi: 10.1016/0022-2836(73)90511-1. [DOI] [PubMed] [Google Scholar]
  9. De Herdt E., Thoen C., Van Hove L., Roggen E., Piot E., Slegers H. Identification and properties of the 38 000-Mr poly(A)-binding protein of non-polysomal messenger ribonucleoproteins of cryptobiotic gastrulae of Artemia salina. Eur J Biochem. 1984 Feb 15;139(1):155–162. doi: 10.1111/j.1432-1033.1984.tb07989.x. [DOI] [PubMed] [Google Scholar]
  10. Dearsly A. L., Johnson R. M., Barrett P., Sommerville J. Identification of a 60-kDa phosphoprotein that binds stored messenger RNA of Xenopus oocytes. Eur J Biochem. 1985 Jul 1;150(1):95–103. doi: 10.1111/j.1432-1033.1985.tb08993.x. [DOI] [PubMed] [Google Scholar]
  11. Denis H., le Maire M. Thesaurisomes, a novel kind of nucleoprotein particle. Subcell Biochem. 1983;9:263–297. doi: 10.1007/978-1-4613-3533-7_3. [DOI] [PubMed] [Google Scholar]
  12. Dolecki G. J., Smith L. D. Poly(A)+ RNA metabolism during oogenesis in Xenopus laevis. Dev Biol. 1979 Mar;69(1):217–236. doi: 10.1016/0012-1606(79)90287-2. [DOI] [PubMed] [Google Scholar]
  13. Egly J. M., Schmitt M., Elkaim R., Kempf J. Protein kinases and their protein substrates in free messenger ribonucleoprotein particles and polysomes from mouse plasmacytoma cells. Eur J Biochem. 1981 Aug;118(2):379–387. doi: 10.1111/j.1432-1033.1981.tb06413.x. [DOI] [PubMed] [Google Scholar]
  14. Ford P. J., Mathieson T., Rosbash M. Very long-lived messenger RNA in ovaries of Xenopus laevis. Dev Biol. 1977 Jun;57(2):417–426. doi: 10.1016/0012-1606(77)90226-3. [DOI] [PubMed] [Google Scholar]
  15. Glätzer K. H., Kloetzel P. M. Differential chromosomal distribution of ribonucleoprotein antigens in nuclei of Drosophila spermatocytes. J Cell Biol. 1986 Dec;103(6 Pt 1):2113–2119. doi: 10.1083/jcb.103.6.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Golden L., Schafer U., Rosbash M. Accumulation of individual pA+ RNAs during oogenesis of Xenopus laevis. Cell. 1980 Dec;22(3):835–844. doi: 10.1016/0092-8674(80)90560-7. [DOI] [PubMed] [Google Scholar]
  17. Goldstein J., Safer B. Use of heparin-Sepharose for the rapid isolation of initiation and elongation factors. Methods Enzymol. 1979;60:165–181. doi: 10.1016/s0076-6879(79)60014-9. [DOI] [PubMed] [Google Scholar]
  18. Hansen L. J., Huang W. I., Jagus R. Inhibitor of translational initiation in sea urchin eggs prevents mRNA utilization. J Biol Chem. 1987 May 5;262(13):6114–6120. [PubMed] [Google Scholar]
  19. Kick D., Barrett P., Cummings A., Sommerville J. Phosphorylation of a 60 kDa polypeptide from Xenopus oocytes blocks messenger RNA translation. Nucleic Acids Res. 1987 May 26;15(10):4099–4109. doi: 10.1093/nar/15.10.4099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kloetzel P. M., Johnson R. M., Sommerville J. Interaction of the hnRNA of amphibian oocytes with fibril-forming proteins. Eur J Biochem. 1982 Oct;127(2):301–308. doi: 10.1111/j.1432-1033.1982.tb06870.x. [DOI] [PubMed] [Google Scholar]
  21. Richter J. D., Smith L. D. Developmentally regulated RNA binding proteins during oogenesis in Xenopus laevis. J Biol Chem. 1983 Apr 25;258(8):4864–4869. [PubMed] [Google Scholar]
  22. Richter J. D., Smith L. D. Reversible inhibition of translation by Xenopus oocyte-specific proteins. Nature. 1984 May 24;309(5966):378–380. doi: 10.1038/309378a0. [DOI] [PubMed] [Google Scholar]
  23. Rittschof D., Traugh J. A. Identification of casein kinase II and phosphorylated proteins associated with messenger ribonucleoproteins particles from reticulocytes. Eur J Biochem. 1982 Apr 1;123(2):333–336. doi: 10.1111/j.1432-1033.1982.tb19772.x. [DOI] [PubMed] [Google Scholar]
  24. Rosbash M. Polyadenylic acid-containing RNA in Xenopus laevis oocytes. J Mol Biol. 1974 May 5;85(1):87–101. doi: 10.1016/0022-2836(74)90131-4. [DOI] [PubMed] [Google Scholar]
  25. Sarkar S., Mukherjee A. K., Guha C. A ribonuclease-resistant cytoplasmic 10 S ribonucleoprotein of chick embryonic muscle. A potent inhibitor of cell-free protein synthesis. J Biol Chem. 1981 May 25;256(10):5077–5086. [PubMed] [Google Scholar]
  26. Sommerville J. Informational ribonucleoprotein particles of newt oocytes: polyribosome-associated ribonucleoproteins. Biochim Biophys Acta. 1974 Apr 27;349(1):96–108. doi: 10.1016/0005-2787(74)90012-4. [DOI] [PubMed] [Google Scholar]
  27. Spirin A. S. Eukaryotic messenger RNA and informosomes. Omnia mea mecum porto. FEBS Lett. 1978 Apr 1;88(1):15–17. doi: 10.1016/0014-5793(78)80596-1. [DOI] [PubMed] [Google Scholar]
  28. Stepanov A. S., Kandror K. V., Elizarov S. M. Protein kinase activity in RNA-binding proteins of Amphibia oocytes. FEBS Lett. 1982 May 17;141(2):157–160. doi: 10.1016/0014-5793(82)80036-7. [DOI] [PubMed] [Google Scholar]
  29. Taylor M. A., Robinson K. R., Smith L. D. Intracellular pH and ribosomal protein S6 phosphorylation: role in translational control in Xenopus oocytes. J Embryol Exp Morphol. 1985 Nov;89 (Suppl):35–51. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES