Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Aug 1;107(2):597–611. doi: 10.1083/jcb.107.2.597

Three-dimensional reconstruction of an actin bundle

PMCID: PMC2115194  PMID: 3417764

Abstract

We present the three-dimensional structure of an actin filament bundle from the sperm of Limulus. The bundle is a motile structure which by changing its twist, converts from a coiled to an extended form. The bundle is composed of actin plus two auxiliary proteins of molecular masses 50 and 60 kD. Fraying the bundle with potassium thiocyanate created three classes of filaments: actin, actin plus the 60-kD protein, and actin plus both the auxiliary proteins. We examined these filaments by transmission electron microscopy and scanning transmission electron microscopy (STEM). Three-dimensional reconstructions from electron micrographs allowed us to visualize the actin subunit and the 60- and 50-kD subunits bound to it. The actin subunit appears to be bilobed with dimensions 70 X 40 X 35 A. The inner lobe of the actin subunit, located at 20 A radius, is a prolate ellipsoid, 50 X 25 A; the outer actin lobe, at 30 A radius, is a 35-A-diam spheroid. Attached to the inner lobe of actin is the 60-kD protein, an oblate spheroid, 55 X 40 A, at 50 A radius. The armlike 50-kD protein, at 55 A radius, links the 60-kD protein on one of actin's twin strands to the outer lobe of the actin subunit on the opposite strand. We speculate that the 60-kD protein may be a bundling protein and that the 50-kD protein may be responsible for the change in twist of the filaments which causes extension of the bundle.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi U., Millonig R., Salvo H., Engel A. The three-dimensional structure of the actin filament revisited. Ann N Y Acad Sci. 1986;483:100–119. doi: 10.1111/j.1749-6632.1986.tb34502.x. [DOI] [PubMed] [Google Scholar]
  2. Amos L. A. Combination of data from helical particles: correlation and selection. J Mol Biol. 1975 Nov 25;99(1):65–73. doi: 10.1016/s0022-2836(75)80159-8. [DOI] [PubMed] [Google Scholar]
  3. Amos L. A., Huxley H. E., Holmes K. C., Goody R. S., Taylor K. A. Structural evidence that myosin heads may interact with two sites on F-actin. Nature. 1982 Sep 30;299(5882):467–469. doi: 10.1038/299467a0. [DOI] [PubMed] [Google Scholar]
  4. Amos L. A. Structure of muscle filaments studied by electron microscopy. Annu Rev Biophys Biophys Chem. 1985;14:291–313. doi: 10.1146/annurev.bb.14.060185.001451. [DOI] [PubMed] [Google Scholar]
  5. DeRosier D. J., Censullo R. Structure of F-actin needles from extracts of sea urchin oocytes. J Mol Biol. 1981 Feb 15;146(1):77–99. doi: 10.1016/0022-2836(81)90367-3. [DOI] [PubMed] [Google Scholar]
  6. DeRosier D. J., Moore P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol. 1970 Sep 14;52(2):355–369. doi: 10.1016/0022-2836(70)90036-7. [DOI] [PubMed] [Google Scholar]
  7. DeRosier D. J., Tilney L. G., Bonder E. M., Frankl P. A change in twist of actin provides the force for the extension of the acrosomal process in Limulus sperm: the false-discharge reaction. J Cell Biol. 1982 May;93(2):324–337. doi: 10.1083/jcb.93.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeRosier D., Mandelkow E., Silliman A. Structure of actin-containing filaments from two types of non-muscle cells. J Mol Biol. 1977 Jul 15;113(4):679–695. doi: 10.1016/0022-2836(77)90230-3. [DOI] [PubMed] [Google Scholar]
  9. DeRosier D., Tilney L., Flicker P. A change in the twist of the actin-containing filaments occurs during the extension of the acrosomal process in Limulus sperm. J Mol Biol. 1980 Mar 15;137(4):375–389. doi: 10.1016/0022-2836(80)90163-1. [DOI] [PubMed] [Google Scholar]
  10. Egelman E. H., Francis N., DeRosier D. J. F-actin is a helix with a random variable twist. Nature. 1982 Jul 8;298(5870):131–135. doi: 10.1038/298131a0. [DOI] [PubMed] [Google Scholar]
  11. Egelman E. H., Francis N., DeRosier D. J. Helical disorder and the filament structure of F-actin are elucidated by the angle-layered aggregate. J Mol Biol. 1983 Jun 5;166(4):605–629. doi: 10.1016/s0022-2836(83)80286-1. [DOI] [PubMed] [Google Scholar]
  12. Egelman E. H. The structure of F-actin. J Muscle Res Cell Motil. 1985 Apr;6(2):129–151. doi: 10.1007/BF00713056. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Sakabe N., Sakabe K., Sasaki K., Kondo H., Ema T., Kamiya N., Matsushima M. Crystallographic studies of the chicken gizzard G-actin X DNase I complex at 5A resolution. J Biochem. 1983 Jan;93(1):299–302. doi: 10.1093/oxfordjournals.jbchem.a134168. [DOI] [PubMed] [Google Scholar]
  15. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  16. Steven A. C., Hainfeld J. F., Trus B. L., Steinert P. M., Wall J. S. Radial distributions of density within macromolecular complexes determined from dark-field electron micrographs. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6363–6367. doi: 10.1073/pnas.81.20.6363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Steven A. C., Simpson T. A., Trus B. L., Furcinitti P. S., Hainfeld J. F., Wall J. S. Radial density profiles of macromolecular filaments determined from dark-field scanning transmission electron micrographs. Improvements in technique and some applications. Ann N Y Acad Sci. 1986;483:188–201. doi: 10.1111/j.1749-6632.1986.tb34520.x. [DOI] [PubMed] [Google Scholar]
  18. Stokes D. L., DeRosier D. J. The variable twist of actin and its modulation by actin-binding proteins. J Cell Biol. 1987 Apr;104(4):1005–1017. doi: 10.1083/jcb.104.4.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suck D., Kabsch W., Mannherz H. G. Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNAse I at 6-A resolution. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4319–4323. doi: 10.1073/pnas.78.7.4319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tilney L. G. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments. J Cell Biol. 1975 Feb;64(2):289–310. doi: 10.1083/jcb.64.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G., Bonder E. M., DeRosier D. J. Actin filaments elongate from their membrane-associated ends. J Cell Biol. 1981 Aug;90(2):485–494. doi: 10.1083/jcb.90.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Trachtenberg S., DeRosier D. J. Three-dimensional structure of the frozen-hydrated flagellar filament. The left-handed filament of Salmonella typhimurium. J Mol Biol. 1987 Jun 5;195(3):581–601. doi: 10.1016/0022-2836(87)90184-7. [DOI] [PubMed] [Google Scholar]
  23. Trinick J., Cooper J., Seymour J., Egelman E. H. Cryo-electron microscopy and three-dimensional reconstruction of actin filaments. J Microsc. 1986 Mar;141(Pt 3):349–360. doi: 10.1111/j.1365-2818.1986.tb02728.x. [DOI] [PubMed] [Google Scholar]
  24. Wall J. S., Hainfeld J. F. Mass mapping with the scanning transmission electron microscope. Annu Rev Biophys Biophys Chem. 1986;15:355–376. doi: 10.1146/annurev.bb.15.060186.002035. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES