Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Aug 1;107(2):771–780. doi: 10.1083/jcb.107.2.771

Transforming growth factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells

PMCID: PMC2115195  PMID: 3166463

Abstract

We have explored the hypothesis that hypertrophy of vascular smooth muscle cells may be regulated, in part, by growth inhibitory factors that alter the pattern of the growth response to serum mitogens by characterizing the effects of the potent growth inhibitor, transforming growth factor-beta (TGF-beta), on both hyperplastic and hypertrophic growth of cultured rat aortic smooth muscle cells. TGF-beta inhibited serum-induced proliferation of rat aortic smooth muscle cells (ED50 = 2 pM); this is consistent with previously reported observations in bovine aortic smooth muscle cells (Assoian et al. 1982. J. Biol. Chem. 258:7155-7160). Growth inhibition was due in part to a greater than twofold increase in the cell cycle transit time in cells that continued to proliferate in the presence of TGF-beta. TGF-beta concurrently induced cellular hypertrophy as assessed by flow cytometric analysis of cellular protein content (47% increase) and forward angle light scatter (32-50% increase), an index of cell size. In addition to being time and concentration dependent, this hypertrophy was reversible. Simultaneous flow cytometric evaluation of forward angle light scatter and cellular DNA content demonstrated that TGF-beta-induced hypertrophy was not dependent on withdrawal of cells from the cell cycle nor was it dependent on growth arrest of cells at a particular point in the cell cycle in that both cycling cells in the G2 phase of the cell cycle and those in G1 were hypertrophied with respect to the corresponding cells in vehicle-treated controls. Chronic treatment with TGF-beta (100 pM, 9 d) was associated with accumulation of cells in the G2 phase of the cell cycle in the virtual absence of cells in S phase, whereas subsequent removal of TGF-beta from these cultures was associated with the appearance of a significant fraction of cycling cells with greater than 4c DNA content, consistent with development of tetraploidy. Results of these studies support a role for TGF-beta in the control of smooth muscle cell growth and suggest that at least one mechanism whereby hypertrophy and hyperploidy may occur in this, as well as other cell types, is by alterations in the response to serum mitogens by potent growth inhibitors such as TGF-beta.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assoian R. K., Fleurdelys B. E., Stevenson H. C., Miller P. J., Madtes D. K., Raines E. W., Ross R., Sporn M. B. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6020–6024. doi: 10.1073/pnas.84.17.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Assoian R. K., Komoriya A., Meyers C. A., Miller D. M., Sporn M. B. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983 Jun 10;258(11):7155–7160. [PubMed] [Google Scholar]
  3. Assoian R. K., Sporn M. B. Type beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol. 1986 Apr;102(4):1217–1223. doi: 10.1083/jcb.102.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berk B. C., Brock T. A., Gimbrone M. A., Jr, Alexander R. W. Early agonist-mediated ionic events in cultured vascular smooth muscle cells. Calcium mobilization is associated with intracellular acidification. J Biol Chem. 1987 Apr 15;262(11):5065–5072. [PubMed] [Google Scholar]
  5. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  6. Brodsky W. Y., Uryvaeva I. V. Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol. 1977;50:275–332. doi: 10.1016/s0074-7696(08)60100-x. [DOI] [PubMed] [Google Scholar]
  7. Chambard J. C., Pouyssegur J. Intracellular pH controls growth factor-induced ribosomal protein S6 phosphorylation and protein synthesis in the G0----G1 transition of fibroblasts. Exp Cell Res. 1986 Jun;164(2):282–294. doi: 10.1016/0014-4827(86)90029-7. [DOI] [PubMed] [Google Scholar]
  8. Chobanian A. V., Lichtenstein A. H., Schwartz J. H., Hanspal J., Brecher P. Effects of deoxycorticosterone/salt hypertension on cell ploidy in rat aortic smooth muscle cells. Circulation. 1987 Jan;75(1 Pt 2):I102–I106. [PubMed] [Google Scholar]
  9. Crissman H. A., Oka M. S., Steinkamp J. A. Rapid staining methods for analysis of deoxyribonucleic acid and protein in mammalian cells. J Histochem Cytochem. 1976 Jan;24(1):64–71. doi: 10.1177/24.1.56392. [DOI] [PubMed] [Google Scholar]
  10. Cromack D. T., Sporn M. B., Roberts A. B., Merino M. J., Dart L. L., Norton J. A. Transforming growth factor beta levels in rat wound chambers. J Surg Res. 1987 Jun;42(6):622–628. doi: 10.1016/0022-4804(87)90005-9. [DOI] [PubMed] [Google Scholar]
  11. Dean P. N., Jett J. H. Mathematical analysis of DNA distributions derived from flow microfluorometry. J Cell Biol. 1974 Feb;60(2):523–527. doi: 10.1083/jcb.60.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenstein R., Wied G. L. Myocardial DNA and protein in maturing and hypertrophied human hearts. Proc Soc Exp Biol Med. 1970 Jan;133(1):176–179. doi: 10.3181/00379727-133-34434. [DOI] [PubMed] [Google Scholar]
  13. Engelmann G. L., Vitullo J. C., Gerrity R. G. Age-related changes in ploidy levels and biochemical parameters in cardiac myocytes isolated from spontaneously hypertensive rats. Circ Res. 1986 Jan;58(1):137–147. doi: 10.1161/01.res.58.1.137. [DOI] [PubMed] [Google Scholar]
  14. FURUYAMA M. Histometrical investigations of arteries in reference to arterial hypertension. Tohoku J Exp Med. 1962 May 25;76:388–414. doi: 10.1620/tjem.76.388. [DOI] [PubMed] [Google Scholar]
  15. Fine L. G., Holley R. W., Nasri H., Badie-Dezfooly B. BSC-1 growth inhibitor transforms a mitogenic stimulus into a hypertrophic stimulus for renal proximal tubular cells: relationship to Na+/H+ antiport activity. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6163–6166. doi: 10.1073/pnas.82.18.6163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Geisterfer A. A., Peach M. J., Owens G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988 Apr;62(4):749–756. doi: 10.1161/01.res.62.4.749. [DOI] [PubMed] [Google Scholar]
  17. Goldberg I. D., Rosen E. M., Shapiro H. M., Zoller L. C., Myrick K., Levenson S. E., Christenson L. Isolation and culture of a tetraploid subpopulation of smooth muscle cells from the normal rat aorta. Science. 1984 Nov 2;226(4674):559–561. doi: 10.1126/science.6494901. [DOI] [PubMed] [Google Scholar]
  18. Heimark R. L., Twardzik D. R., Schwartz S. M. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science. 1986 Sep 5;233(4768):1078–1080. doi: 10.1126/science.3461562. [DOI] [PubMed] [Google Scholar]
  19. Like B., Massagué J. The antiproliferative effect of type beta transforming growth factor occurs at a level distal from receptors for growth-activating factors. J Biol Chem. 1986 Oct 15;261(29):13426–13429. [PubMed] [Google Scholar]
  20. Nováková V., Sandritter W., Schlueter G. DNA content of neurons in rat central nervous system. Exp Cell Res. 1970 Jun;60(3):454–456. doi: 10.1016/0014-4827(70)90541-0. [DOI] [PubMed] [Google Scholar]
  21. Owens G. K., Rabinovitch P. S., Schwartz S. M. Smooth muscle cell hypertrophy versus hyperplasia in hypertension. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7759–7763. doi: 10.1073/pnas.78.12.7759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Owens G. K., Schwartz S. M. Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res. 1983 Oct;53(4):491–501. doi: 10.1161/01.res.53.4.491. [DOI] [PubMed] [Google Scholar]
  23. Pitts G. C. Cellular aspects of growth and catch-up growth in the rat: a reevaluation. Growth. 1986 Winter;50(4):419–436. [PubMed] [Google Scholar]
  24. Rao P. N. The molecular basis of drug-induced G2 arrest in mammalian cells. Mol Cell Biochem. 1980 Jan 16;29(1):47–57. doi: 10.1007/BF00230954. [DOI] [PubMed] [Google Scholar]
  25. Roberts A. B., Anzano M. A., Wakefield L. M., Roche N. S., Stern D. F., Sporn M. B. Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci U S A. 1985 Jan;82(1):119–123. doi: 10.1073/pnas.82.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rowley R. Is G2-arrest an active cellular response to irradiation? Int J Radiat Biol Relat Stud Phys Chem Med. 1985 Nov;48(5):811–820. doi: 10.1080/09553008514551911. [DOI] [PubMed] [Google Scholar]
  27. Rumyantsev P. P. Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol. 1977;51:186–273. [PubMed] [Google Scholar]
  28. Schwartz K., de la Bastie D., Bouveret P., Oliviéro P., Alonso S., Buckingham M. Alpha-skeletal muscle actin mRNA's accumulate in hypertrophied adult rat hearts. Circ Res. 1986 Nov;59(5):551–555. doi: 10.1161/01.res.59.5.551. [DOI] [PubMed] [Google Scholar]
  29. Schwartz S. M., Benditt E. P. Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circ Res. 1977 Aug;41(2):248–255. doi: 10.1161/01.res.41.2.248. [DOI] [PubMed] [Google Scholar]
  30. Sporn M. B., Roberts A. B., Wakefield L. M., Assoian R. K. Transforming growth factor-beta: biological function and chemical structure. Science. 1986 Aug 1;233(4763):532–534. doi: 10.1126/science.3487831. [DOI] [PubMed] [Google Scholar]
  31. Zaitsu H., Kimura G. Prolongation of duration of G2 arrest delays and finally blocks entry into M phase in contrast to stable and reversible G1 arrest: study of a G1/G2 temperature-sensitive mutant of rat 3Y1 fibroblasts. J Cell Physiol. 1985 Aug;124(2):177–181. doi: 10.1002/jcp.1041240202. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES