Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Aug 1;107(2):555–562. doi: 10.1083/jcb.107.2.555

Localization of phospholamban in smooth muscle using immunogold electron microscopy

PMCID: PMC2115198  PMID: 3417762

Abstract

Phospholamban, the putative regulator of the Ca2+-ATPase in cardiac sarcoplasmic reticulum, was immunolocalized in canine visceral and vascular smooth muscle. Gently disrupted tissues were labeled with an affinity-purified phospholamban polyclonal antibody and indirect immunogold, using preembedding techniques. The sarcoplasmic reticulum of smooth muscle cells was specifically labeled with patches of immunogold distributed in a nonuniform fashion, while the sarcolemma did not appear to contain any phospholamban. The outer nuclear envelopes were also observed to be heavily labeled with the affinity- purified phospholamban polyclonal antibody. These findings suggest that phospholamban may play a role in the regulation of cytoplasmic and intranuclear calcium levels in smooth muscle cells.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhalla R. C., Webb R. C., Singh D., Brock T. Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake. Am J Physiol. 1978 May;234(5):H508–H514. doi: 10.1152/ajpheart.1978.234.5.H508. [DOI] [PubMed] [Google Scholar]
  2. Ferguson D. G., Franzini-Armstrong C. The Ca2+ ATPase content of slow and fast twitch fibers of guinea pig. Muscle Nerve. 1988 Jun;11(6):561–570. doi: 10.1002/mus.880110607. [DOI] [PubMed] [Google Scholar]
  3. Heilmann C., Brdiczka D., Nickel E., Pette D. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles. Eur J Biochem. 1977 Dec 1;81(2):211–222. doi: 10.1111/j.1432-1033.1977.tb11943.x. [DOI] [PubMed] [Google Scholar]
  4. Inui M., Kadoma M., Tada M. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Mar 25;260(6):3708–3715. [PubMed] [Google Scholar]
  5. Jones L. R., Simmerman H. K., Wilson W. W., Gurd F. R., Wegener A. D. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Jun 25;260(12):7721–7730. [PubMed] [Google Scholar]
  6. Jorgensen A. O., Jones L. R. Immunoelectron microscopical localization of phospholamban in adult canine ventricular muscle. J Cell Biol. 1987 May;104(5):1343–1352. doi: 10.1083/jcb.104.5.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kirchberger M. A., Antonetz T. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem. 1982 May 25;257(10):5685–5691. [PubMed] [Google Scholar]
  8. Kirchberger M. A., Tada M., Katz A. M. Adenosine 3':5'-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem. 1974 Oct 10;249(19):6166–6173. [PubMed] [Google Scholar]
  9. Kowarski D., Shuman H., Somlyo A. P., Somlyo A. V. Calcium release by noradrenaline from central sarcoplasmic reticulum in rabbit main pulmonary artery smooth muscle. J Physiol. 1985 Sep;366:153–175. doi: 10.1113/jphysiol.1985.sp015790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kranias E. G., Bilezikjian L. M., Potter J. D., Piascik M. T., Schwartz A. The role of calmodulin in regulation of cardiac sarcoplasmic reticulum phosphorylation. Ann N Y Acad Sci. 1980;356:279–291. doi: 10.1111/j.1749-6632.1980.tb29618.x. [DOI] [PubMed] [Google Scholar]
  11. Kranias E. G., Mandel F., Wang T., Schwartz A. Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3',5'-monophosphate dependent protein kinase. Biochemistry. 1980 Nov 11;19(23):5434–5439. doi: 10.1021/bi00564a044. [DOI] [PubMed] [Google Scholar]
  12. Kranias E. G. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Sep 15;260(20):11006–11010. [PubMed] [Google Scholar]
  13. Kranias E. G., Schwartz A., Jungmann R. A. Characterization of cyclic 3':5'-amp-dependent protein kinase in sarcoplasmic reticulum and cytosol of canine myocardium. Biochim Biophys Acta. 1982 Dec 6;709(1):28–37. doi: 10.1016/0167-4838(82)90417-4. [DOI] [PubMed] [Google Scholar]
  14. Kranias E. G., Solaro R. J. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature. 1982 Jul 8;298(5870):182–184. doi: 10.1038/298182a0. [DOI] [PubMed] [Google Scholar]
  15. Le Peuch C. J., Haiech J., Demaille J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry. 1979 Nov 13;18(23):5150–5157. doi: 10.1021/bi00590a019. [DOI] [PubMed] [Google Scholar]
  16. Lindemann J. P., Jones L. R., Hathaway D. R., Henry B. G., Watanabe A. M. beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem. 1983 Jan 10;258(1):464–471. [PubMed] [Google Scholar]
  17. Mandel F., Kranias E. G., Schwartz A. The effect of cAMP-dependent protein kinase phosphorylation on the external Ca2+ binding sites of cardiac sarcoplasmic reticulum. J Bioenerg Biomembr. 1983 Aug;15(4):179–194. doi: 10.1007/BF00743939. [DOI] [PubMed] [Google Scholar]
  18. Movsesian M. A., Nishikawa M., Adelstein R. S. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem. 1984 Jul 10;259(13):8029–8032. [PubMed] [Google Scholar]
  19. Nishikori K., Maeno H. Close relationship between adenosine 3':5'-monophosphate-dependent endogenous phosphorylation of a specific protein and stimulation of calcium uptake in rat uterine microsomes. J Biol Chem. 1979 Jul 10;254(13):6099–6106. [PubMed] [Google Scholar]
  20. Palade P., Saito A., Mitchell R. D., Fleischer S. Preparation of representative samples of subcellular fractions for electron microscopy by filtration with dextran. J Histochem Cytochem. 1983 Jul;31(7):971–974. doi: 10.1177/31.7.6189886. [DOI] [PubMed] [Google Scholar]
  21. Raeymaekers L., Jones L. R. Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle. Biochim Biophys Acta. 1986 Jun 19;882(2):258–265. doi: 10.1016/0304-4165(86)90163-7. [DOI] [PubMed] [Google Scholar]
  22. Raeymaekers L., Wuytack F., Casteels R. Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2+ + Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum. Biochim Biophys Acta. 1985 May 28;815(3):441–454. doi: 10.1016/0005-2736(85)90372-4. [DOI] [PubMed] [Google Scholar]
  23. Saida K., Van Breemen C. Cyclic AMP modulation of adrenoreceptor-mediated arterial smooth muscle contraction. J Gen Physiol. 1984 Aug;84(2):307–318. doi: 10.1085/jgp.84.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salviati G., Volpe P., Salvatori S., Betto R., Damiani E., Margreth A., Pasquali-Ronchetti I. Biochemical heterogeneity of skeletal-muscle microsomal membranes. Membrane origin, membrane specificity and fibre types. Biochem J. 1982 Feb 15;202(2):289–301. doi: 10.1042/bj2020289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang C. T., Saito A., Fleischer S. Correlation of ultrastructure of reconstituted sarcoplasmic reticulum membrane vesicles with variation in phospholipid to protein ratio. J Biol Chem. 1979 Sep 25;254(18):9209–9219. [PubMed] [Google Scholar]
  26. Wiehrer W., Pette D. The ratio between intrinsic 115 kDa and 30 kDa peptides as a marker of fibre type-specific sarcoplasmic reticulum in mammalian muscles. FEBS Lett. 1983 Jul 25;158(2):317–320. doi: 10.1016/0014-5793(83)80604-8. [DOI] [PubMed] [Google Scholar]
  27. Williams D. A., Becker P. L., Fay F. S. Regional changes in calcium underlying contraction of single smooth muscle cells. Science. 1987 Mar 27;235(4796):1644–1648. doi: 10.1126/science.3103219. [DOI] [PubMed] [Google Scholar]
  28. Young E. F., Ralston E., Blake J., Ramachandran J., Hall Z. W., Stroud R. M. Topological mapping of acetylcholine receptor: evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide. Proc Natl Acad Sci U S A. 1985 Jan;82(2):626–630. doi: 10.1073/pnas.82.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES