Abstract
Phospholamban, the putative regulator of the Ca2+-ATPase in cardiac sarcoplasmic reticulum, was immunolocalized in canine visceral and vascular smooth muscle. Gently disrupted tissues were labeled with an affinity-purified phospholamban polyclonal antibody and indirect immunogold, using preembedding techniques. The sarcoplasmic reticulum of smooth muscle cells was specifically labeled with patches of immunogold distributed in a nonuniform fashion, while the sarcolemma did not appear to contain any phospholamban. The outer nuclear envelopes were also observed to be heavily labeled with the affinity- purified phospholamban polyclonal antibody. These findings suggest that phospholamban may play a role in the regulation of cytoplasmic and intranuclear calcium levels in smooth muscle cells.
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhalla R. C., Webb R. C., Singh D., Brock T. Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake. Am J Physiol. 1978 May;234(5):H508–H514. doi: 10.1152/ajpheart.1978.234.5.H508. [DOI] [PubMed] [Google Scholar]
- Ferguson D. G., Franzini-Armstrong C. The Ca2+ ATPase content of slow and fast twitch fibers of guinea pig. Muscle Nerve. 1988 Jun;11(6):561–570. doi: 10.1002/mus.880110607. [DOI] [PubMed] [Google Scholar]
- Heilmann C., Brdiczka D., Nickel E., Pette D. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles. Eur J Biochem. 1977 Dec 1;81(2):211–222. doi: 10.1111/j.1432-1033.1977.tb11943.x. [DOI] [PubMed] [Google Scholar]
- Inui M., Kadoma M., Tada M. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Mar 25;260(6):3708–3715. [PubMed] [Google Scholar]
- Jones L. R., Simmerman H. K., Wilson W. W., Gurd F. R., Wegener A. D. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Jun 25;260(12):7721–7730. [PubMed] [Google Scholar]
- Jorgensen A. O., Jones L. R. Immunoelectron microscopical localization of phospholamban in adult canine ventricular muscle. J Cell Biol. 1987 May;104(5):1343–1352. doi: 10.1083/jcb.104.5.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchberger M. A., Antonetz T. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem. 1982 May 25;257(10):5685–5691. [PubMed] [Google Scholar]
- Kirchberger M. A., Tada M., Katz A. M. Adenosine 3':5'-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem. 1974 Oct 10;249(19):6166–6173. [PubMed] [Google Scholar]
- Kowarski D., Shuman H., Somlyo A. P., Somlyo A. V. Calcium release by noradrenaline from central sarcoplasmic reticulum in rabbit main pulmonary artery smooth muscle. J Physiol. 1985 Sep;366:153–175. doi: 10.1113/jphysiol.1985.sp015790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kranias E. G., Bilezikjian L. M., Potter J. D., Piascik M. T., Schwartz A. The role of calmodulin in regulation of cardiac sarcoplasmic reticulum phosphorylation. Ann N Y Acad Sci. 1980;356:279–291. doi: 10.1111/j.1749-6632.1980.tb29618.x. [DOI] [PubMed] [Google Scholar]
- Kranias E. G., Mandel F., Wang T., Schwartz A. Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3',5'-monophosphate dependent protein kinase. Biochemistry. 1980 Nov 11;19(23):5434–5439. doi: 10.1021/bi00564a044. [DOI] [PubMed] [Google Scholar]
- Kranias E. G. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Sep 15;260(20):11006–11010. [PubMed] [Google Scholar]
- Kranias E. G., Schwartz A., Jungmann R. A. Characterization of cyclic 3':5'-amp-dependent protein kinase in sarcoplasmic reticulum and cytosol of canine myocardium. Biochim Biophys Acta. 1982 Dec 6;709(1):28–37. doi: 10.1016/0167-4838(82)90417-4. [DOI] [PubMed] [Google Scholar]
- Kranias E. G., Solaro R. J. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature. 1982 Jul 8;298(5870):182–184. doi: 10.1038/298182a0. [DOI] [PubMed] [Google Scholar]
- Le Peuch C. J., Haiech J., Demaille J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry. 1979 Nov 13;18(23):5150–5157. doi: 10.1021/bi00590a019. [DOI] [PubMed] [Google Scholar]
- Lindemann J. P., Jones L. R., Hathaway D. R., Henry B. G., Watanabe A. M. beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem. 1983 Jan 10;258(1):464–471. [PubMed] [Google Scholar]
- Mandel F., Kranias E. G., Schwartz A. The effect of cAMP-dependent protein kinase phosphorylation on the external Ca2+ binding sites of cardiac sarcoplasmic reticulum. J Bioenerg Biomembr. 1983 Aug;15(4):179–194. doi: 10.1007/BF00743939. [DOI] [PubMed] [Google Scholar]
- Movsesian M. A., Nishikawa M., Adelstein R. S. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem. 1984 Jul 10;259(13):8029–8032. [PubMed] [Google Scholar]
- Nishikori K., Maeno H. Close relationship between adenosine 3':5'-monophosphate-dependent endogenous phosphorylation of a specific protein and stimulation of calcium uptake in rat uterine microsomes. J Biol Chem. 1979 Jul 10;254(13):6099–6106. [PubMed] [Google Scholar]
- Palade P., Saito A., Mitchell R. D., Fleischer S. Preparation of representative samples of subcellular fractions for electron microscopy by filtration with dextran. J Histochem Cytochem. 1983 Jul;31(7):971–974. doi: 10.1177/31.7.6189886. [DOI] [PubMed] [Google Scholar]
- Raeymaekers L., Jones L. R. Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle. Biochim Biophys Acta. 1986 Jun 19;882(2):258–265. doi: 10.1016/0304-4165(86)90163-7. [DOI] [PubMed] [Google Scholar]
- Raeymaekers L., Wuytack F., Casteels R. Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2+ + Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum. Biochim Biophys Acta. 1985 May 28;815(3):441–454. doi: 10.1016/0005-2736(85)90372-4. [DOI] [PubMed] [Google Scholar]
- Saida K., Van Breemen C. Cyclic AMP modulation of adrenoreceptor-mediated arterial smooth muscle contraction. J Gen Physiol. 1984 Aug;84(2):307–318. doi: 10.1085/jgp.84.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salviati G., Volpe P., Salvatori S., Betto R., Damiani E., Margreth A., Pasquali-Ronchetti I. Biochemical heterogeneity of skeletal-muscle microsomal membranes. Membrane origin, membrane specificity and fibre types. Biochem J. 1982 Feb 15;202(2):289–301. doi: 10.1042/bj2020289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C. T., Saito A., Fleischer S. Correlation of ultrastructure of reconstituted sarcoplasmic reticulum membrane vesicles with variation in phospholipid to protein ratio. J Biol Chem. 1979 Sep 25;254(18):9209–9219. [PubMed] [Google Scholar]
- Wiehrer W., Pette D. The ratio between intrinsic 115 kDa and 30 kDa peptides as a marker of fibre type-specific sarcoplasmic reticulum in mammalian muscles. FEBS Lett. 1983 Jul 25;158(2):317–320. doi: 10.1016/0014-5793(83)80604-8. [DOI] [PubMed] [Google Scholar]
- Williams D. A., Becker P. L., Fay F. S. Regional changes in calcium underlying contraction of single smooth muscle cells. Science. 1987 Mar 27;235(4796):1644–1648. doi: 10.1126/science.3103219. [DOI] [PubMed] [Google Scholar]
- Young E. F., Ralston E., Blake J., Ramachandran J., Hall Z. W., Stroud R. M. Topological mapping of acetylcholine receptor: evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide. Proc Natl Acad Sci U S A. 1985 Jan;82(2):626–630. doi: 10.1073/pnas.82.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
