Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Aug 1;107(2):539–544. doi: 10.1083/jcb.107.2.539

Evidence for involvement of metalloendoproteases in a step in sea urchin gamete fusion

PMCID: PMC2115212  PMID: 3417761

Abstract

Membrane fusion events are required in three steps in sea urchin fertilization: the acrosome reaction in sperm, fusion of the plasma membrane of acrosome-reacted sperm with the plasma membrane of the egg, and exocytosis of the contents of the egg cortical granules. We recently reported the involvement of a Zn2+-dependent metalloendoprotease in the acrosome reaction (Farach, H. C., D. I. Mundy, W. J. Strittmatter, and W. J. Lennarz. 1987. J. Biol. Chem. 262:5483-5487). In the current study, we investigated the possible involvement of metalloendoproteases in the two other fusion events of fertilization. The use of inhibitors of metalloendoproteases provided evidence that at least one of the fusion events subsequent to the acrosome reaction requires such enzymes. These inhibitors did not block the binding of sperm to egg or the process of cortical granule exocytosis. However, sperm-egg fusion, assayed by the ability of the bound sperm to establish cytoplasmic continuity with the egg, was inhibited by metalloendoprotease substrate. Thus, in addition to the acrosome reaction, an event in the gamete fusion process requires a metalloendoprotease.

Full Text

The Full Text of this article is available as a PDF (957.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clapper D. L., Davis J. A., Lamothe P. J., Patton C., Epel D. Involvement of zinc in the regulation of pHi, motility, and acrosome reactions in sea urchin sperm. J Cell Biol. 1985 Jun;100(6):1817–1824. doi: 10.1083/jcb.100.6.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Couch C. B., Strittmatter W. J. Rat myoblast fusion requires metalloendoprotease activity. Cell. 1983 Jan;32(1):257–265. doi: 10.1016/0092-8674(83)90516-0. [DOI] [PubMed] [Google Scholar]
  3. Couch C. B., Strittmatter W. J. Specific blockers of myoblast fusion inhibit a soluble and not the membrane-associated metalloendoprotease in myoblasts. J Biol Chem. 1984 May 10;259(9):5396–5399. [PubMed] [Google Scholar]
  4. Decker G. L., Lennarz W. J. Sperm binding and fertilization envelope formation in a cell surface complex isolated from sea urchin eggs. J Cell Biol. 1979 Apr;81(1):92–103. doi: 10.1083/jcb.81.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  6. Farach H. A., Jr, Mundy D. I., Strittmatter W. J., Lennarz W. J. Evidence for the involvement of metalloendoproteases in the acrosome reaction in sea urchin sperm. J Biol Chem. 1987 Apr 25;262(12):5483–5487. [PubMed] [Google Scholar]
  7. Green J. D., Summers R. G. Ultrastructural demonstration of trypsin-like protease in acrosomes of sea urchin sperm. Science. 1980 Jul 18;209(4454):398–400. doi: 10.1126/science.6992277. [DOI] [PubMed] [Google Scholar]
  8. Hinkley R. E., Wright B. D., Lynn J. W. Rapid visual detection of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Dev Biol. 1986 Nov;118(1):148–154. doi: 10.1016/0012-1606(86)90082-5. [DOI] [PubMed] [Google Scholar]
  9. Jackson R. C., Ward K. K., Haggerty J. G. Mild proteolytic digestion restores exocytotic activity to N-ethylmaleimide-inactivated cell surface complex from sea urchin eggs. J Cell Biol. 1985 Jul;101(1):6–11. doi: 10.1083/jcb.101.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinsey W. H., Rubin J. A., Lennarz W. J. Studies on the specificity of sperm binding in echinoderm fertilization. Dev Biol. 1980 Jan;74(1):245–250. doi: 10.1016/0012-1606(80)90067-6. [DOI] [PubMed] [Google Scholar]
  11. Kinsey W. H., SeGall G. K., Lennarz W. J. The effect of the acrosome reaction on the respiratory activity and fertilizing capacity of echinoid sperm. Dev Biol. 1979 Jul;71(1):49–59. doi: 10.1016/0012-1606(79)90081-2. [DOI] [PubMed] [Google Scholar]
  12. Mumford R. A., Strauss A. W., Powers J. C., Pierzchala P. A., Nishino N., Zimmerman M. A zinc metalloendopeptidase associated with dog pancreatic membranes. J Biol Chem. 1980 Mar 25;255(6):2227–2230. [PubMed] [Google Scholar]
  13. Mundy D. I., Strittmatter W. J. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells. Cell. 1985 Mar;40(3):645–656. doi: 10.1016/0092-8674(85)90213-2. [DOI] [PubMed] [Google Scholar]
  14. Resing K., Green J. D., Walsh K. A. A 53,000-Da esterase in Strongylocentrotus purpuratus semen is derived from phagocytic cells, not sperm. Dev Biol. 1985 Jan;107(1):87–93. doi: 10.1016/0012-1606(85)90378-1. [DOI] [PubMed] [Google Scholar]
  15. Rossignol D. P., Earles B. J., Decker G. L., Lennarz W. J. Characterization of the sperm receptor on the surface of eggs of Strongylocentrotus purpuratus. Dev Biol. 1984 Aug;104(2):308–321. doi: 10.1016/0012-1606(84)90086-1. [DOI] [PubMed] [Google Scholar]
  16. SeGall G. K., Lennarz W. J. Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Dev Biol. 1979 Jul;71(1):33–48. doi: 10.1016/0012-1606(79)90080-0. [DOI] [PubMed] [Google Scholar]
  17. Trimmer J. S., Vacquier V. D. Activation of sea urchin gametes. Annu Rev Cell Biol. 1986;2:1–26. doi: 10.1146/annurev.cb.02.110186.000245. [DOI] [PubMed] [Google Scholar]
  18. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys. 1983 May;16(2):151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES