Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Aug 1;107(2):427–446. doi: 10.1083/jcb.107.2.427

Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation

PMCID: PMC2115222  PMID: 2458356

Abstract

We report here the isolation and characterization of three antisera, each of which is specific for a single keratin from one of the three different pairs (K1/K10, K14/K5, K16/K6) that are differentially expressed in normal human epidermis and in epidermal diseases of hyperproliferation. We have used these antisera in conjunction with monospecific cRNA probes for epidermal keratin mRNAs to investigate pathways of differentiation in human epidermis and epidermal diseases in vivo and in epidermal cells cultured from normal skin and from squamous cell carcinomas in vitro. Specifically, our results suggest that: (a) the basal-specific keratin mRNAs are down-regulated upon commitment to terminal differentiation, but their encoded proteins are stable, and can be detected throughout the spinous layers; (b) the hyperproliferation-associated keratin mRNAs are expressed at a low level throughout normal epidermis when their encoded proteins are not expressed, but are synthesized at high levels in the suprabasal layers of hyperproliferating epidermis, coincident with the induced expression of the hyperproliferation-associated keratins in these cells; and (c) concomitantly with the induction of the hyperproliferation-associated keratins in the suprabasal layers of the epidermis is the down- regulation of the expression of the terminal differentiation-specific keratins. These data have important implications for our understanding of normal epidermal differentiation and the deviations from this process in the course of epidermal diseases of hyperproliferation.

Full Text

The Full Text of this article is available as a PDF (9.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers K., Fuchs E. The expression of mutant epidermal keratin cDNAs transfected in simple epithelial and squamous cell carcinoma lines. J Cell Biol. 1987 Aug;105(2):791–806. doi: 10.1083/jcb.105.2.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asselineau D., Bernard B. A., Bailly C., Darmon M., Pruniéras M. Human epidermis reconstructed by culture: is it "normal"? J Invest Dermatol. 1986 Feb;86(2):181–186. doi: 10.1111/1523-1747.ep12284237. [DOI] [PubMed] [Google Scholar]
  3. Asselineau D., Bernhard B., Bailly C., Darmon M. Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp Cell Res. 1985 Aug;159(2):536–539. doi: 10.1016/s0014-4827(85)80027-6. [DOI] [PubMed] [Google Scholar]
  4. Baden H. P., McGilvray N., Cheng C. K., Lee L. D., Kubilus J. The keratin polypeptides of psoriatic epidermis. J Invest Dermatol. 1978 May;70(5):294–297. doi: 10.1111/1523-1747.ep12541529. [DOI] [PubMed] [Google Scholar]
  5. Bowden P. E., Wood E. J., Cunliffe W. J. Comparison of prekeratin and keratin polypeptides in normal and psoriatic human epidermis. Biochim Biophys Acta. 1983 Feb 28;743(1):172–179. doi: 10.1016/0167-4838(83)90431-4. [DOI] [PubMed] [Google Scholar]
  6. Breitkreutz D., Tilgen W., Boukamp P., Fusenig N. E. Correlation of prekaratin peptides and ultrastructure in epithelial cells of human skin tumors in vivo and in vitro. Anticancer Res. 1981;1(6):323–328. [PubMed] [Google Scholar]
  7. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  8. Fuchs E., Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980 Apr;19(4):1033–1042. doi: 10.1016/0092-8674(80)90094-x. [DOI] [PubMed] [Google Scholar]
  9. Fuchs E., Hanukoglu I. Unraveling the structure of the intermediate filaments. Cell. 1983 Sep;34(2):332–334. doi: 10.1016/0092-8674(83)90367-7. [DOI] [PubMed] [Google Scholar]
  10. Fuchs E., Tyner A. L., Giudice G. J., Marchuk D., RayChaudhury A., Rosenberg M. The human keratin genes and their differential expression. Curr Top Dev Biol. 1987;22:5–34. doi: 10.1016/s0070-2153(08)60097-6. [DOI] [PubMed] [Google Scholar]
  11. Geisler N., Kaufmann E., Weber K. Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10 nm filaments. Cell. 1982 Aug;30(1):277–286. doi: 10.1016/0092-8674(82)90033-2. [DOI] [PubMed] [Google Scholar]
  12. Hanukoglu I., Fuchs E. The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell. 1983 Jul;33(3):915–924. doi: 10.1016/0092-8674(83)90034-x. [DOI] [PubMed] [Google Scholar]
  13. Hunter L., Skerrow D. The proteins of living psoriatic epidermis. Biochim Biophys Acta. 1982 Jan 12;714(1):164–169. doi: 10.1016/0304-4165(82)90139-8. [DOI] [PubMed] [Google Scholar]
  14. Johnson L. D., Idler W. W., Zhou X. M., Roop D. R., Steinert P. M. Structure of a gene for the human epidermal 67-kDa keratin. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1896–1900. doi: 10.1073/pnas.82.7.1896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karasek M. A., Charlton M. E. Growth of postembryonic skin epithelial cells on collagen gels. J Invest Dermatol. 1971 Mar;56(3):205–210. doi: 10.1111/1523-1747.ep12260838. [DOI] [PubMed] [Google Scholar]
  16. Knight J., Gusterson B., Jones R. R., Landells W., Wilson P. Monoclonal antibodies specific for subsets of epidermal keratins: biochemical and immunocytochemical characterization--applications in pathology and cell culture. J Pathol. 1985 Apr;145(4):341–354. doi: 10.1002/path.1711450407. [DOI] [PubMed] [Google Scholar]
  17. Kopan R., Traska G., Fuchs E. Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J Cell Biol. 1987 Jul;105(1):427–440. doi: 10.1083/jcb.105.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kubilus J., Baden H. P., McGilvray N. Filamentous protein of basal cell epithelioma: characteristics in vivo and in vitro. J Natl Cancer Inst. 1980 Nov;65(5):869–875. [PubMed] [Google Scholar]
  19. Lane E. B., Bártek J., Purkis P. E., Leigh I. M. Keratin antigens in differentiating skin. Ann N Y Acad Sci. 1985;455:241–258. doi: 10.1111/j.1749-6632.1985.tb50415.x. [DOI] [PubMed] [Google Scholar]
  20. Lavker R. M., Sun T. T. Epidermal stem cells. J Invest Dermatol. 1983 Jul;81(1 Suppl):121s–127s. doi: 10.1111/1523-1747.ep12540880. [DOI] [PubMed] [Google Scholar]
  21. Leigh I. M., Pulford K. A., Ramaekers F. C., Lane E. B. Psoriasis: maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation. Br J Dermatol. 1985 Jul;113(1):53–64. doi: 10.1111/j.1365-2133.1985.tb02044.x. [DOI] [PubMed] [Google Scholar]
  22. Lersch R., Fuchs E. Sequence and expression of a type II keratin, K5, in human epidermal cells. Mol Cell Biol. 1988 Jan;8(1):486–493. doi: 10.1128/mcb.8.1.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lillie J. H., MacCallum D. K., Jepsen A. Fine structure of subcultivated stratified squamous epithelium grown on collagen rafts. Exp Cell Res. 1980 Jan;125(1):153–165. doi: 10.1016/0014-4827(80)90199-8. [DOI] [PubMed] [Google Scholar]
  24. Mansbridge J. N., Knapp A. M. Changes in keratinocyte maturation during wound healing. J Invest Dermatol. 1987 Sep;89(3):253–263. doi: 10.1111/1523-1747.ep12471216. [DOI] [PubMed] [Google Scholar]
  25. Marchuk D., McCrohon S., Fuchs E. Complete sequence of a gene encoding a human type I keratin: sequences homologous to enhancer elements in the regulatory region of the gene. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1609–1613. doi: 10.1073/pnas.82.6.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marchuk D., McCrohon S., Fuchs E. Remarkable conservation of structure among intermediate filament genes. Cell. 1984 Dec;39(3 Pt 2):491–498. doi: 10.1016/0092-8674(84)90456-2. [DOI] [PubMed] [Google Scholar]
  27. Matoltsy A. G., Matoltsy M. N., Cliffel P. J. Characterization of keratin polypeptides of normal and psoriatic horny cells. J Invest Dermatol. 1983 Mar;80(3):185–188. doi: 10.1111/1523-1747.ep12534005. [DOI] [PubMed] [Google Scholar]
  28. McGuire J., Osber M., Lightfoot L. Two keratins MW 50,000 and 56,000 are synthesized by psoriatic epidermis. Br J Dermatol. 1984 Jul;111 (Suppl 27):27–37. doi: 10.1111/j.1365-2133.1984.tb15579.x. [DOI] [PubMed] [Google Scholar]
  29. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  30. Moll R., Franke W. W., Volc-Platzer B., Krepler R. Different keratin polypeptides in epidermis and other epithelia of human skin: a specific cytokeratin of molecular weight 46,000 in epithelia of the pilosebaceous tract and basal cell epitheliomas. J Cell Biol. 1982 Oct;95(1):285–295. doi: 10.1083/jcb.95.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moll R., Krepler R., Franke W. W. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation. 1983;23(3):256–269. doi: 10.1111/j.1432-0436.1982.tb01291.x. [DOI] [PubMed] [Google Scholar]
  32. Moll R., Moll I., Franke W. W. Differences of expression of cytokeratin polypeptides in various epithelial skin tumors. Arch Dermatol Res. 1984;276(6):349–363. doi: 10.1007/BF00413355. [DOI] [PubMed] [Google Scholar]
  33. Nelson W. G., Sun T. T. The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol. 1983 Jul;97(1):244–251. doi: 10.1083/jcb.97.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  35. Ramaekers F. C., Puts J. J., Moesker O., Kant A., Huysmans A., Haag D., Jap P. H., Herman C. J., Vooijs G. P. Antibodies to intermediate filament proteins in the immunohistochemical identification of human tumours: an overview. Histochem J. 1983 Jul;15(7):691–713. doi: 10.1007/BF01002988. [DOI] [PubMed] [Google Scholar]
  36. RayChaudhury A., Marchuk D., Lindhurst M., Fuchs E. Three tightly linked genes encoding human type I keratins: conservation of sequence in the 5'-untranslated leader and 5'-upstream regions of coexpressed keratin genes. Mol Cell Biol. 1986 Feb;6(2):539–548. doi: 10.1128/mcb.6.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Robinson J. K. Expression of keratin proteins in deeply invasive basal and squamous cell carcinoma: an immunohistochemical study. J Dermatol Surg Oncol. 1987 Mar;13(3):283–294. doi: 10.1111/j.1524-4725.1987.tb03951.x. [DOI] [PubMed] [Google Scholar]
  38. Roop D. R., Cheng C. K., Titterington L., Meyers C. A., Stanley J. R., Steinert P. M., Yuspa S. H. Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies. J Biol Chem. 1984 Jul 10;259(13):8037–8040. [PubMed] [Google Scholar]
  39. Rosenberg M., RayChaudhury A., Shows T. B., Le Beau M. M., Fuchs E. A group of type I keratin genes on human chromosome 17: characterization and expression. Mol Cell Biol. 1988 Feb;8(2):722–736. doi: 10.1128/mcb.8.2.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schermer A., Galvin S., Sun T. T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986 Jul;103(1):49–62. doi: 10.1083/jcb.103.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Skerrow D., Skerrow C. J. Tonofilament differentiation in human epidermis, isolation and polypeptide chain composition of keratinocyte subpopulations. Exp Cell Res. 1983 Jan;143(1):27–35. doi: 10.1016/0014-4827(83)90105-2. [DOI] [PubMed] [Google Scholar]
  42. Steinert P. M., Rice R. H., Roop D. R., Trus B. L., Steven A. C. Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments. Nature. 1983 Apr 28;302(5911):794–800. doi: 10.1038/302794a0. [DOI] [PubMed] [Google Scholar]
  43. Steinert P. M., Steven A. C., Roop D. R. The molecular biology of intermediate filaments. Cell. 1985 Sep;42(2):411–420. doi: 10.1016/0092-8674(85)90098-4. [DOI] [PubMed] [Google Scholar]
  44. Sun T. T., Green H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J Biol Chem. 1978 Mar 25;253(6):2053–2060. [PubMed] [Google Scholar]
  45. Thaler M., Fukuyama K., Epstein W. L., Fisher K. A. Comparative studies of keratins isolated from psoriasis and atopic dermatitis. J Invest Dermatol. 1980 Aug;75(2):156–158. doi: 10.1111/1523-1747.ep12522546. [DOI] [PubMed] [Google Scholar]
  46. Thomas P., Said J. W., Nash G., Banks-Schlegel S. Profiles of keratin proteins in basal and squamous cell carcinomas of the skin. An immunohistochemical study. Lab Invest. 1984 Jan;50(1):36–41. [PubMed] [Google Scholar]
  47. Tseng S. C., Jarvinen M. J., Nelson W. G., Huang J. W., Woodcock-Mitchell J., Sun T. T. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell. 1982 Sep;30(2):361–372. doi: 10.1016/0092-8674(82)90234-3. [DOI] [PubMed] [Google Scholar]
  48. Tyner A. L., Fuchs E. Evidence for posttranscriptional regulation of the keratins expressed during hyperproliferation and malignant transformation in human epidermis. J Cell Biol. 1986 Nov;103(5):1945–1955. doi: 10.1083/jcb.103.5.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Viac J., Staquet M. J., Thivolet J., Goujon C. Experimental production of antibodies against stratum corneum keratin polypeptides. Arch Dermatol Res. 1980;267(2):179–188. doi: 10.1007/BF00569104. [DOI] [PubMed] [Google Scholar]
  50. Weinstein G. D., Van Scott E. J. Autoradiographic analysis of turnover times of normal and psoriatic epidermis. J Invest Dermatol. 1965 Oct;45(4):257–262. doi: 10.1038/jid.1965.126. [DOI] [PubMed] [Google Scholar]
  51. Weiss R. A., Eichner R., Sun T. T. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol. 1984 Apr;98(4):1397–1406. doi: 10.1083/jcb.98.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Weiss R. A., Guillet G. Y., Freedberg I. M., Farmer E. R., Small E. A., Weiss M. M., Sun T. T. The use of monoclonal antibody to keratin in human epidermal disease: alterations in immunohistochemical staining pattern. J Invest Dermatol. 1983 Sep;81(3):224–230. doi: 10.1111/1523-1747.ep12518198. [DOI] [PubMed] [Google Scholar]
  53. Woodcock-Mitchell J., Eichner R., Nelson W. G., Sun T. T. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):580–588. doi: 10.1083/jcb.95.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wu Y. J., Rheinwald J. G. A new small (40 kd) keratin filament protein made by some cultured human squamous cell carcinomas. Cell. 1981 Sep;25(3):627–635. doi: 10.1016/0092-8674(81)90170-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES