Abstract
Eggs of the amphibian, Xenopus laevis, were quick-frozen, deep-etched, and rotary-shadowed. The structure of the extracellular matrix surrounding these eggs, including the perivitelline space and the vitelline envelope (VE), was visualized in platinum replicas by electron microscopy. The perivitelline space contains an elaborate filamentous glycocalyx which connects microvillar tips to the plasma membrane, to adjacent microvilli, and to the overlying VE. The VE is comprised of two layers, the innermost of which is a thin network of horizontal fibrils lying on the tips of the microvilli. The outermost is a thicker layer of large, cable-like fibers which twist and turn throughout the envelope. Upon fertilization, three dramatic modifications of the matrix occur. A thin sheet of smooth material, termed the smooth layer, is deposited on the tips of the microvilli and separates the egg from the overlying envelopes. The VE above is transformed from a thick band of cable-like fibers to concentric fibrous sheets, the altered VE. Finally, an ornate band of particles, corresponding to the fertilization layer in previous studies, is deposited at the altered VE/jelly interface. The altered VE and the fertilization layer comprise the fertilization envelope, which effects the structural block to polyspermy.
Full Text
The Full Text of this article is available as a PDF (7.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barros C., Yanagimachi R. Induction of zona reaction in golden hamster eggs by cortical granule material. Nature. 1971 Sep 24;233(5317):268–269. doi: 10.1038/233268a0. [DOI] [PubMed] [Google Scholar]
- Barros C., Yanagimachi R. Polyspermy-preventing mechanisms in the golden hamster egg. J Exp Zool. 1972 May;180(2):251–265. doi: 10.1002/jez.1401800211. [DOI] [PubMed] [Google Scholar]
- Bleil J. D., Wassarman P. M. Mammalian sperm-egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell. 1980 Jul;20(3):873–882. doi: 10.1016/0092-8674(80)90334-7. [DOI] [PubMed] [Google Scholar]
- Chandler D. E., Heuser J. The vitelline layer of the sea urchin egg and its modification during fertilization. A freeze-fracture study using quick-freezing and deep-etching. J Cell Biol. 1980 Mar;84(3):618–632. doi: 10.1083/jcb.84.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerhart J., Ubbels G., Black S., Hara K., Kirschner M. A reinvestigation of the role of the grey crescent in axis formation in xenopus laevis. Nature. 1981 Aug 6;292(5823):511–516. doi: 10.1038/292511a0. [DOI] [PubMed] [Google Scholar]
- Gerton G. L., Hedrick J. L. The vitelline envelope to fertilization envelope conversion in eggs of Xenopus laevis. Dev Biol. 1986 Jul;116(1):1–7. doi: 10.1016/0012-1606(86)90036-9. [DOI] [PubMed] [Google Scholar]
- Glabe C. G., Vacquier V. D. Egg surface glycoprotein receptor for sea urchin sperm bindin. Proc Natl Acad Sci U S A. 1978 Feb;75(2):881–885. doi: 10.1073/pnas.75.2.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grey R. D., Wolf D. P., Hedrick J. L. Formation and structure of the fertilization envelope in Xenopus laevis. Dev Biol. 1974 Jan;36(1):44–61. doi: 10.1016/0012-1606(74)90189-4. [DOI] [PubMed] [Google Scholar]
- Grey R. D., Working P. K., Hedrick J. L. Evidence that the fertilization envelope blocks sperm entry in eggs of Xenopus laevis: interaction of sperm with isolated envelopes. Dev Biol. 1976 Nov;54(1):52–60. doi: 10.1016/0012-1606(76)90285-2. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palecek J., Ubbels G. A., Rzehak K. Changes of the external and internal pigment pattern upon fertilization in the egg of Xenopus laevis. J Embryol Exp Morphol. 1978 Jun;45:203–214. [PubMed] [Google Scholar]
- Rossignol D. P., Earles B. J., Decker G. L., Lennarz W. J. Characterization of the sperm receptor on the surface of eggs of Strongylocentrotus purpuratus. Dev Biol. 1984 Aug;104(2):308–321. doi: 10.1016/0012-1606(84)90086-1. [DOI] [PubMed] [Google Scholar]
- Stewart-Savage J., Grey R. D. Loss of functional sperm entry into Xenopus eggs after activation correlates with a reduction in surface adhesivity. Dev Biol. 1987 Apr;120(2):434–446. doi: 10.1016/0012-1606(87)90247-8. [DOI] [PubMed] [Google Scholar]
- Veron M., Foerder C., Eddy E. M., Shapiro Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Cell. 1977 Feb;10(2):321–328. doi: 10.1016/0092-8674(77)90226-4. [DOI] [PubMed] [Google Scholar]
- Wolf D. P., Nishihara T., West D. M., Wyrick R. E., Hedrick J. L. Isolation, physicochemical properties, and the macromolecular composition of the vitelline and fertilization envelopes from Xenopus laevis eggs. Biochemistry. 1976 Aug 24;15(17):3671–3678. doi: 10.1021/bi00662a005. [DOI] [PubMed] [Google Scholar]
- Wolf D. P. The cortical granule reaction in living eggs of the toad, Xenopus laevis. Dev Biol. 1974 Jan;36(1):62–71. doi: 10.1016/0012-1606(74)90190-0. [DOI] [PubMed] [Google Scholar]
- Wyrick R. E., Nishihara T., Hedrick J. L. Agglutination of jelly coat and cortical granule components and the block to polyspermy in the amphibian Xenopus laevis. Proc Natl Acad Sci U S A. 1974 May;71(5):2067–2071. doi: 10.1073/pnas.71.5.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]