Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Oct 1;107(4):1611–1619. doi: 10.1083/jcb.107.4.1611

Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes

PMCID: PMC2115244  PMID: 2459134

Abstract

To survive and proliferate in pure culture, human melanocytes require basic fibroblast growth factor (bFGF) and cAMP. Without these factors, even in the presence of serum, the cells die. Melanocytes cultured in the presence of keratinocytes, however, survive for weeks without added bFGF and cAMP. We show here that the growth factor for melanocytes produced by human keratinocytes is bFGF because its activity can be abolished by neutralizing antibodies to bFGF and by a bFGF synthetic peptide that inhibits the binding of the growth factor to its receptor. The melanocyte mitogen in keratinocytes is cell associated and increases after irradiation with ultraviolet B. Northern blots reveal bFGF gene transcripts in keratinocytes but not melanocytes. These studies demonstrate that bFGF elaborated by keratinocytes in vitro sustains melanocyte growth and survival, and they suggest that keratinocyte-derived bFGF is the natural growth factor for normal human melanocytes in vivo.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham J. A., Mergia A., Whang J. L., Tumolo A., Friedman J., Hjerrild K. A., Gospodarowicz D., Fiddes J. C. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986 Aug 1;233(4763):545–548. doi: 10.1126/science.2425435. [DOI] [PubMed] [Google Scholar]
  2. Abraham J. A., Whang J. L., Tumolo A., Mergia A., Friedman J., Gospodarowicz D., Fiddes J. C. Human basic fibroblast growth factor: nucleotide sequence and genomic organization. EMBO J. 1986 Oct;5(10):2523–2528. doi: 10.1002/j.1460-2075.1986.tb04530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baird A., Ling N. Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun. 1987 Jan 30;142(2):428–435. doi: 10.1016/0006-291x(87)90292-0. [DOI] [PubMed] [Google Scholar]
  4. Baird A., Schubert D., Ling N., Guillemin R. Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2324–2328. doi: 10.1073/pnas.85.7.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cohn S. M., Krawisz B. R., Dresler S. L., Lieberman M. W. Induction of replicative DNA synthesis in quiescent human fibroblasts by DNA damaging agents. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4828–4832. doi: 10.1073/pnas.81.15.4828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Leo V. A., Horlick H., Hanson D., Eisinger M., Harber L. C. Ultraviolet radiation induces changes in membrane metabolism of human keratinocytes in culture. J Invest Dermatol. 1984 Nov;83(5):323–326. doi: 10.1111/1523-1747.ep12264114. [DOI] [PubMed] [Google Scholar]
  8. Eisinger M., Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2018–2022. doi: 10.1073/pnas.79.6.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  10. Friedmann P. S., Gilchrest B. A. Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol. 1987 Oct;133(1):88–94. doi: 10.1002/jcp.1041330111. [DOI] [PubMed] [Google Scholar]
  11. Gospodarowicz D., Cheng J., Lui G. M., Baird A., Böhlent P. Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6963–6967. doi: 10.1073/pnas.81.22.6963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gospodarowicz D., Massoglia S., Cheng J., Fujii D. K. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol. 1986 Apr;127(1):121–136. doi: 10.1002/jcp.1041270116. [DOI] [PubMed] [Google Scholar]
  13. Halaban R., Alfano F. D. Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro. 1984 May;20(5):447–450. doi: 10.1007/BF02619590. [DOI] [PubMed] [Google Scholar]
  14. Halaban R., Ghosh S., Baird A. bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Dev Biol. 1987 Jan;23(1):47–52. doi: 10.1007/BF02623492. [DOI] [PubMed] [Google Scholar]
  15. Halaban R., Ghosh S., Duray P., Kirkwood J. M., Lerner A. B. Human melanocytes cultured from nevi and melanomas. J Invest Dermatol. 1986 Jul;87(1):95–101. doi: 10.1111/1523-1747.ep12523594. [DOI] [PubMed] [Google Scholar]
  16. Halaban R., Kwon B. S., Ghosh S., Delli Bovi P., Baird A. bFGF as an autocrine growth factor for human melanomas. Oncogene Res. 1988 Sep;3(2):177–186. [PubMed] [Google Scholar]
  17. Halaban R., Pomerantz S. H., Marshall S., Lambert D. T., Lerner A. B. Regulation of tyrosinase in human melanocytes grown in culture. J Cell Biol. 1983 Aug;97(2):480–488. doi: 10.1083/jcb.97.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jeanny J. C., Fayein N., Moenner M., Chevallier B., Barritault D., Courtois Y. Specific fixation of bovine brain and retinal acidic and basic fibroblast growth factors to mouse embryonic eye basement membranes. Exp Cell Res. 1987 Jul;171(1):63–75. doi: 10.1016/0014-4827(87)90251-5. [DOI] [PubMed] [Google Scholar]
  19. Kupper T. S., Chua A. O., Flood P., McGuire J., Gubler U. Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J Clin Invest. 1987 Aug;80(2):430–436. doi: 10.1172/JCI113090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lerner M. R., Reagan J., Gyorgyi T., Roby A. Olfaction by melanophores: what does it mean? Proc Natl Acad Sci U S A. 1988 Jan;85(1):261–264. doi: 10.1073/pnas.85.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Libow L. F., Scheide S., DeLeo V. A. Ultraviolet radiation acts as an independent mitogen for normal human melanocytes in culture. Pigment Cell Res. 1988;1(6):397–401. doi: 10.1111/j.1600-0749.1988.tb00142.x. [DOI] [PubMed] [Google Scholar]
  22. PRUNIERAS M., LEUNG T. K., COLSON P. DISSOCIATION ET RECOMBINAISON IN VITRO DE L''EPIDERME DE COBAYE ADULTE. Ann Dermatol Syphiligr (Paris) 1964 Jan-Feb;91:23–37. [PubMed] [Google Scholar]
  23. Quevedo W. C., Szabó G., Virks J. Influence of age and UV on the populations of dopa-positive melanocytes in human skin. J Invest Dermatol. 1969 Mar;52(3):287–290. [PubMed] [Google Scholar]
  24. Rogelj S., Weinberg R. A., Fanning P., Klagsbrun M. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature. 1988 Jan 14;331(6152):173–175. doi: 10.1038/331173a0. [DOI] [PubMed] [Google Scholar]
  25. Rosdahl I. K. Melanocyte mitosis in UVB-irradiated mouse skin. Acta Derm Venereol. 1978;58(3):217–221. [PubMed] [Google Scholar]
  26. Rosdahl I. K., Szabó G. Mitotic activity of epidermal melanocytes in UV-irradiated mouse skin. J Invest Dermatol. 1978 Mar;70(3):143–148. doi: 10.1111/1523-1747.ep12258559. [DOI] [PubMed] [Google Scholar]
  27. Schorpp M., Mallick U., Rahmsdorf H. J., Herrlich P. UV-induced extracellular factor from human fibroblasts communicates the UV response to nonirradiated cells. Cell. 1984 Jul;37(3):861–868. doi: 10.1016/0092-8674(84)90421-5. [DOI] [PubMed] [Google Scholar]
  28. Schubert D., Ling N., Baird A. Multiple influences of a heparin-binding growth factor on neuronal development. J Cell Biol. 1987 Mar;104(3):635–643. doi: 10.1083/jcb.104.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schweigerer L., Neufeld G., Friedman J., Abraham J. A., Fiddes J. C., Gospodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature. 1987 Jan 15;325(6101):257–259. doi: 10.1038/325257a0. [DOI] [PubMed] [Google Scholar]
  30. Siegel L. I., Bresnick E. Northern hybridization analysis of RNA using diethylpyrocarbonate-treated nonfat milk. Anal Biochem. 1986 Nov 15;159(1):82–87. doi: 10.1016/0003-2697(86)90310-6. [DOI] [PubMed] [Google Scholar]
  31. Vlodavsky I., Folkman J., Sullivan R., Fridman R., Ishai-Michaeli R., Sasse J., Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2292–2296. doi: 10.1073/pnas.84.8.2292. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES