Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Oct 1;107(4):1489–1498. doi: 10.1083/jcb.107.4.1489

Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein

PMCID: PMC2115250  PMID: 2844829

Abstract

Oocytes, notably those of amphibia, accumulate large pools of nonfilamentous ("soluble") actin, both in the cytoplasm and in the nucleoplasm, which coexist with extensive actin filament arrays in the cytoplasmic cortex. Because the regulation of oogenically accumulated actin is important in various processes of oogenesis, egg formation, fertilization and early embryogenesis, we have purified and characterized the major actin-binding proteins present in oocytes of Xenopus laevis. Here we report that the major actin-binding component in the ooplasm, but not in the nucleus, is a polypeptide of Mr approximately 93,000 on SDS-PAGE that reduces actin polymerization in vitro in a Ca2+-dependent manner but promotes nucleation events, and also reduces the viscosity of actin polymers, indicative of severing activity. We have raised antibodies against the purified oocyte protein and show that it is different from villin, is also prominent in unfertilized eggs and early embryos and is very similar to a corresponding protein present in various tissues and in cultured cells, and appears to be spread over the cytoplasm. Using these antibodies we have isolated a cDNA clone from a lambda gt11 expression library of ovarian poly(A)+-RNA. Determination of the amino acid sequence derived from the nucleotide sequence, together with the directly determined sequence of the amino terminus of the native protein, has shown that this clone encodes the carboxy-terminal half of gelsolin. We conclude that gelsolin is the major actin-modulating protein in oogenesis and early embryogenesis of amphibia, and probably also of other species, that probably also plays an important role in the various Ca2+- dependent gelation and contractility processes characteristic of these development stages.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achtstaetter T., Hatzfeld M., Quinlan R. A., Parmelee D. C., Franke W. W. Separation of cytokeratin polypeptides by gel electrophoretic and chromatographic techniques and their identification by immunoblotting. Methods Enzymol. 1986;134:355–371. doi: 10.1016/0076-6879(86)34102-8. [DOI] [PubMed] [Google Scholar]
  2. Bauw G., De Loose M., Inzé D., Van Montagu M., Vandekerckhove J. Alterations in the phenotype of plant cells studied by NH(2)-terminal amino acid-sequence analysis of proteins electroblotted from two-dimensional gel-separated total extracts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4806–4810. doi: 10.1073/pnas.84.14.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Bretscher A., Weber K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci U S A. 1979 May;76(5):2321–2325. doi: 10.1073/pnas.76.5.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bryan J., Coluccio L. M. Kinetic analysis of F-actin depolymerization in the presence of platelet gelsolin and gelsolin-actin complexes. J Cell Biol. 1985 Oct;101(4):1236–1244. doi: 10.1083/jcb.101.4.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryan J., Kane R. E. Actin gelation in sea urchin egg extracts. Methods Cell Biol. 1982;25(Pt B):175–199. doi: 10.1016/s0091-679x(08)61425-9. [DOI] [PubMed] [Google Scholar]
  7. Bryan J., Kurth M. C. Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem. 1984 Jun 25;259(12):7480–7487. [PubMed] [Google Scholar]
  8. Christensen K., Sauterer R., Merriam R. W. Role of soluble myosin in cortical contractions of Xenopus eggs. Nature. 1984 Jul 12;310(5973):150–151. doi: 10.1038/310150a0. [DOI] [PubMed] [Google Scholar]
  9. Clark T. G., Merriam R. W. Actin in Xenopus oocytes. J Cell Biol. 1978 May;77(2):427–438. doi: 10.1083/jcb.77.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clark T. G., Merriam R. W. Diffusible and bound actin nuclei of Xenopus laevis oocytes. Cell. 1977 Dec;12(4):883–891. doi: 10.1016/0092-8674(77)90152-0. [DOI] [PubMed] [Google Scholar]
  11. Cooper J. A., Pollard T. D. Methods to measure actin polymerization. Methods Enzymol. 1982;85(Pt B):182–210. doi: 10.1016/0076-6879(82)85021-0. [DOI] [PubMed] [Google Scholar]
  12. Corwin H. L., Hartwig J. H. Isolation of actin-binding protein and villin from toad oocytes. Dev Biol. 1983 Sep;99(1):61–74. doi: 10.1016/0012-1606(83)90254-3. [DOI] [PubMed] [Google Scholar]
  13. Coué M., Korn E. D. Interaction of plasma gelsolin with G-actin and F-actin in the presence and absence of calcium ions. J Biol Chem. 1985 Dec 5;260(28):15033–15041. [PubMed] [Google Scholar]
  14. Dudouet B., Robine S., Huet C., Sahuquillo-Merino C., Blair L., Coudrier E., Louvard D. Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones. J Cell Biol. 1987 Jul;105(1):359–369. doi: 10.1083/jcb.105.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Elder J. H., Pickett R. A., 2nd, Hampton J., Lerner R. A. Radioiodination of proteins in single polyacrylamide gel slices. Tryptic peptide analysis of all the major members of complex multicomponent systems using microgram quantities of total protein. J Biol Chem. 1977 Sep 25;252(18):6510–6515. [PubMed] [Google Scholar]
  16. Fleming T. P., Pickering S. J., Qasim F., Maro B. The generation of cell surface polarity in mouse 8-cell blastomeres: the role of cortical microfilaments analysed using cytochalasin D. J Embryol Exp Morphol. 1986 Jun;95:169–191. [PubMed] [Google Scholar]
  17. Franke W. W., Rathke P. C., Seib E., Trendelenburg M. F., Osborn M., Weber K. Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie. 1976 Dec;14(1):111–130. [PubMed] [Google Scholar]
  18. Franke W. W., Winter S., Grund C., Schmid E., Schiller D. L., Jarasch E. D. Isolation and characterization of desmosome-associated tonofilaments from rat intestinal brush border. J Cell Biol. 1981 Jul;90(1):116–127. doi: 10.1083/jcb.90.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gerke V., Weber K. Isolation and characterization of mammalian villin and fimbrin, the two bundling proteins of the intestinal microvilli. Eur J Cell Biol. 1983 Sep;31(2):249–255. [PubMed] [Google Scholar]
  20. Giebelhaus D. H., Zelus B. D., Henchman S. K., Moon R. T. Changes in the expression of alpha-fodrin during embryonic development of Xenopus laevis. J Cell Biol. 1987 Aug;105(2):843–853. doi: 10.1083/jcb.105.2.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gounon P., Karsenti E. Involvement of contractile proteins in the changes in consistency of oocyte nucleoplasm of the newt Pleurodeles waltlii. J Cell Biol. 1981 Feb;88(2):410–421. doi: 10.1083/jcb.88.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hamaguchi Y., Mabuchi I. Accumulation of fluorescently labeled actin in the cortical layer in sea urchin eggs after fertilization. Cell Motil Cytoskeleton. 1988;9(2):153–163. doi: 10.1002/cm.970090207. [DOI] [PubMed] [Google Scholar]
  23. Hwo S., Bryan J. Immuno-identification of Ca2+-induced conformational changes in human gelsolin and brevin. J Cell Biol. 1986 Jan;102(1):227–236. doi: 10.1083/jcb.102.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jahn L., Fouquet B., Rohe K., Franke W. W. Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation. 1987;36(3):234–254. doi: 10.1111/j.1432-0436.1987.tb00198.x. [DOI] [PubMed] [Google Scholar]
  25. Janmey P. A., Chaponnier C., Lind S. E., Zaner K. S., Stossel T. P., Yin H. L. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochemistry. 1985 Jul 2;24(14):3714–3723. doi: 10.1021/bi00335a046. [DOI] [PubMed] [Google Scholar]
  26. Keller R. E., Danilchik M., Gimlich R., Shih J. The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morphol. 1985 Nov;89 (Suppl):185–209. [PubMed] [Google Scholar]
  27. Kleinschmidt J. A., Dingwall C., Maier G., Franke W. W. Molecular characterization of a karyophilic, histone-binding protein: cDNA cloning, amino acid sequence and expression of nuclear protein N1/N2 of Xenopus laevis. EMBO J. 1986 Dec 20;5(13):3547–3552. doi: 10.1002/j.1460-2075.1986.tb04681.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kleinschmidt J. A., Franke W. W. Soluble acidic complexes containing histones H3 and H4 in nuclei of Xenopus laevis oocytes. Cell. 1982 Jul;29(3):799–809. doi: 10.1016/0092-8674(82)90442-1. [DOI] [PubMed] [Google Scholar]
  29. Kwiatkowski D. J., Mehl R., Yin H. L. Genomic organization and biosynthesis of secreted and cytoplasmic forms of gelsolin. J Cell Biol. 1988 Feb;106(2):375–384. doi: 10.1083/jcb.106.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kwiatkowski D. J., Stossel T. P., Orkin S. H., Mole J. E., Colten H. R., Yin H. L. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature. 1986 Oct 2;323(6087):455–458. doi: 10.1038/323455a0. [DOI] [PubMed] [Google Scholar]
  31. Lind S. E., Janmey P. A., Chaponnier C., Herbert T. J., Stossel T. P. Reversible binding of actin to gelsolin and profilin in human platelet extracts. J Cell Biol. 1987 Aug;105(2):833–842. doi: 10.1083/jcb.105.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Luchtel D., Bluemink J. G., de Laat S. W. The effect of injected cytochalasin B on filament organization in the cleaving egg of Xenopus laevis. J Ultrastruct Res. 1976 Mar;54(3):406–419. doi: 10.1016/s0022-5320(76)80026-3. [DOI] [PubMed] [Google Scholar]
  33. Matsudaira P., Jakes R., Walker J. E. A gelsolin-like Ca2+-dependent actin-binding domain in villin. Nature. 1985 May 16;315(6016):248–250. doi: 10.1038/315248a0. [DOI] [PubMed] [Google Scholar]
  34. Merriam R. W., Clark T. G. Actin in Xenopus oocytes. II. Intracellular distribution and polymerizability. J Cell Biol. 1978 May;77(2):439–447. doi: 10.1083/jcb.77.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Merriam R. W., Sauterer R. A., Christensen K. A subcortical, pigment-containing structure in Xenopus eggs with contractile properties. Dev Biol. 1983 Feb;95(2):439–446. doi: 10.1016/0012-1606(83)90045-3. [DOI] [PubMed] [Google Scholar]
  36. Nodes B. R., Shackelford J. E., Lebherz H. G. Synthesis and secretion of serum gelsolin by smooth muscle tissue. J Biol Chem. 1987 Apr 15;262(11):5422–5427. [PubMed] [Google Scholar]
  37. Otto J. J., Schroeder T. E. Assembly-disassembly of actin bundles in starfish oocytes: an analysis of actin-associated proteins in the isolated cortex. Dev Biol. 1984 Feb;101(2):263–273. doi: 10.1016/0012-1606(84)90140-4. [DOI] [PubMed] [Google Scholar]
  38. Paine P. L. Diffusive and nondiffusive proteins in vivo. J Cell Biol. 1984 Jul;99(1 Pt 2):188s–195s. doi: 10.1083/jcb.99.1.188s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pollard T. D. A falling ball apparatus to measure filament cross-linking. Methods Cell Biol. 1982;24:301–311. doi: 10.1016/s0091-679x(08)60663-9. [DOI] [PubMed] [Google Scholar]
  40. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  41. Pringault E., Arpin M., Garcia A., Finidori J., Louvard D. A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J. 1986 Dec 1;5(12):3119–3124. doi: 10.1002/j.1460-2075.1986.tb04618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rungger D., Rungger-Brändle E., Chaponnier C., Gabbiani G. Intranuclear injection of anti-actin antibodies into Xenopus oocytes blocks chromosome condensation. Nature. 1979 Nov 15;282(5736):320–321. doi: 10.1038/282320a0. [DOI] [PubMed] [Google Scholar]
  43. Sardet C., Chang P. The egg cortex: from maturation through fertilization. Cell Differ. 1987 Jun;21(1):1–19. doi: 10.1016/0045-6039(87)90443-x. [DOI] [PubMed] [Google Scholar]
  44. Scheer U., Hinssen H., Franke W. W., Jockusch B. M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell. 1984 Nov;39(1):111–122. doi: 10.1016/0092-8674(84)90196-x. [DOI] [PubMed] [Google Scholar]
  45. Selman G. G., Perry M. M. Ultrastructural changes in the surface layers of the newt's egg in relation to the mechanism of its cleavage. J Cell Sci. 1970 Jan;6(1):207–227. doi: 10.1242/jcs.6.1.207. [DOI] [PubMed] [Google Scholar]
  46. Seraydarian K., Briskey E. J., Mommaerts W. F. The modification of actomyosin by alpha- actinin. I. A survey of experimental conditions. Biochim Biophys Acta. 1967 Apr 11;133(3):399–411. doi: 10.1016/0005-2795(67)90544-2. [DOI] [PubMed] [Google Scholar]
  47. Shibayama T., Carboni J. M., Mooseker M. S. Assembly of the intestinal brush border: appearance and redistribution of microvillar core proteins in developing chick enterocytes. J Cell Biol. 1987 Jul;105(1):335–344. doi: 10.1083/jcb.105.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  49. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  50. Vacquier V. D. Dynamic changes of the egg cortex. Dev Biol. 1981 May;84(1):1–26. doi: 10.1016/0012-1606(81)90366-3. [DOI] [PubMed] [Google Scholar]
  51. Vandekerckhove J., Franke W. W., Weber K. Diversity of expression of non-muscle actin in amphibia. J Mol Biol. 1981 Oct 25;152(2):413–426. doi: 10.1016/0022-2836(81)90251-5. [DOI] [PubMed] [Google Scholar]
  52. Wang L. L., Spudich J. A. A 45,000-mol-wt protein from unfertilized sea urchin eggs severs actin filaments in a calcium-dependent manner and increases the steady-state concentration of nonfilamentous actin. J Cell Biol. 1984 Sep;99(3):844–851. doi: 10.1083/jcb.99.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Weeds A. G., Gooch J., Pope B., Harris H. E. Preparation and characterization of pig plasma and platelet gelsolins. Eur J Biochem. 1986 Nov 17;161(1):69–76. doi: 10.1111/j.1432-1033.1986.tb10125.x. [DOI] [PubMed] [Google Scholar]
  54. Yin H. L., Albrecht J. H., Fattoum A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol. 1981 Dec;91(3 Pt 1):901–906. doi: 10.1083/jcb.91.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yin H. L., Kwiatkowski D. J., Mole J. E., Cole F. S. Structure and biosynthesis of cytoplasmic and secreted variants of gelsolin. J Biol Chem. 1984 Apr 25;259(8):5271–5276. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES