Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Oct 1;107(4):1477–1487. doi: 10.1083/jcb.107.4.1477

Microheterogeneity of actin gels formed under controlled linear shear

PMCID: PMC2115258  PMID: 2844828

Abstract

The diffusion coefficients and fluorescence polarization properties of actin subjected to a known shear have been determined both during and after polymerization, using a modification of a cone-plate Wells- Brookfield rheometer that allows monitoring of samples with an epifluorescence microscope. Fluorescence polarization and fluorescence photobleaching recovery experiments using rhodamine-labeled actin as a tracer showed that under conditions of low shear (shear rates of 0.05 s- 1), a spatial heterogeneity of polymerized actin was observed with respect to fluorescence intensity and the diffusion coefficients with actin mobility becoming quite variable in different regions of the sample. In addition, complex changes in fluorescence polarization were noted after stopping the shear. Actin filaments of controlled length were obtained using plasma gelsolin (gelsolin/actin molar ratios of 1:50 to 1:300). At ratios of 1:50, neither spatial heterogeneity nor changes in polarization were observed on subjecting the polymerized actin to shear. At ratios of approximately 1:100, a decrease on the intensity of fluorescence polarization occurs on stopping the shear. Longer filaments exhibit spatial micro-heterogeneity and complex changes in fluorescence polarization. In addition, at ratios of 1:100 or 1:300, the diffusion coefficient decreases as the total applied shear increased. This behavior is interpreted as bundling of filaments aligned under shear. We also find that the F-actin translational diffusion coefficients decrease as the total applied shear increases (shear rates between 0.05 and 12.66 s-1), as expected for a cumulative process. When chicken gizzard filamin was added to gelsolin-actin filaments (at filamin/actin molar ratios of 1:300 to 1:10), a similar decrease in the diffusion coefficients was observed for unsheared samples. Spatial microheterogeneity might be related to the effects of the shear field in the alignment of filaments, and the balance between a three-dimensional network and a microheterogeneous system (containing bundles or anisotropic phases) appears related to both shear and the presence of actin-binding proteins.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borejdo J., Muhlrad A., Leibovich S. J., Oplatka A. Polymerization of G-actin by hydrodynamic shear stresses. Biochim Biophys Acta. 1981 Jan 30;667(1):118–131. doi: 10.1016/0005-2795(81)90072-6. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Buxbaum R. E., Dennerll T., Weiss S., Heidemann S. R. F-actin and microtubule suspensions as indeterminate fluids. Science. 1987 Mar 20;235(4795):1511–1514. doi: 10.1126/science.2881354. [DOI] [PubMed] [Google Scholar]
  5. Chaponnier C., Patebex P., Gabbiani G. Human plasma actin-depolymerizing factor. Purification, biological activity and localization in leukocytes and platelets. Eur J Biochem. 1985 Jan 15;146(2):267–276. doi: 10.1111/j.1432-1033.1985.tb08649.x. [DOI] [PubMed] [Google Scholar]
  6. Cooper J. A., Bryan J., Schwab B., 3rd, Frieden C., Loftus D. J., Elson E. L. Microinjection of gelsolin into living cells. J Cell Biol. 1987 Mar;104(3):491–501. doi: 10.1083/jcb.104.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies P. J., Wallach D., Willingham M., Pastan I., Lewis M. S. Self-association of chicken gizzard filamin and heavy merofilamin. Biochemistry. 1980 Apr 1;19(7):1366–1372. doi: 10.1021/bi00548a015. [DOI] [PubMed] [Google Scholar]
  8. DeRosier D. J., Tilney L. G. How actin filaments pack into bundles. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):525–540. doi: 10.1101/sqb.1982.046.01.049. [DOI] [PubMed] [Google Scholar]
  9. Doi Y., Frieden C. Actin polymerization. The effect of brevin on filament size and rate of polymerization. J Biol Chem. 1984 Oct 10;259(19):11868–11875. [PubMed] [Google Scholar]
  10. Duggleby R. G. A nonlinear regression program for small computers. Anal Biochem. 1981 Jan 1;110(1):9–18. doi: 10.1016/0003-2697(81)90104-4. [DOI] [PubMed] [Google Scholar]
  11. Elson E. L. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem. 1988;17:397–430. doi: 10.1146/annurev.bb.17.060188.002145. [DOI] [PubMed] [Google Scholar]
  12. Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
  13. Franke R. P., Gräfe M., Schnittler H., Seiffge D., Mittermayer C., Drenckhahn D. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature. 1984 Feb 16;307(5952):648–649. doi: 10.1038/307648a0. [DOI] [PubMed] [Google Scholar]
  14. Harris D. A., Schwartz J. H. Characterization of brevin, a serum protein that shortens actin filaments. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6798–6802. doi: 10.1073/pnas.78.11.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Houk T. W., Jr, Ue K. The measurement of actin concentration in solution: a comparison of methods. Anal Biochem. 1974 Nov;62(1):66–74. doi: 10.1016/0003-2697(74)90367-4. [DOI] [PubMed] [Google Scholar]
  16. Ito T., Zaner K. S., Stossel T. P. Nonideality of volume flows and phase transitions of F-actin solutions in response to osmotic stress. Biophys J. 1987 May;51(5):745–753. doi: 10.1016/S0006-3495(87)83401-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Janmey P. A., Peetermans J., Zaner K. S., Stossel T. P., Tanaka T. Structure and mobility of actin filaments as measured by quasielastic light scattering, viscometry, and electron microscopy. J Biol Chem. 1986 Jun 25;261(18):8357–8362. [PubMed] [Google Scholar]
  18. Jen C. J., McIntire L. V., Bryan J. The viscoelastic properties of actin solutions. Arch Biochem Biophys. 1982 Jun;216(1):126–132. doi: 10.1016/0003-9861(82)90196-5. [DOI] [PubMed] [Google Scholar]
  19. Joshi H. C., Chu D., Buxbaum R. E., Heidemann S. R. Tension and compression in the cytoskeleton of PC 12 neurites. J Cell Biol. 1985 Sep;101(3):697–705. doi: 10.1083/jcb.101.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  22. Maruyama K., Kaibara M., Fukada E. Rheology of F-actin. I. Network of F-actin in solution. Biochim Biophys Acta. 1974 Nov 5;371(1):20–29. doi: 10.1016/0005-2795(74)90150-0. [DOI] [PubMed] [Google Scholar]
  23. Petersen N. O., McConnaughey W. B., Elson E. L. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5327–5331. doi: 10.1073/pnas.79.17.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pollard T. D., Cooper J. A. Methods to characterize actin filament networks. Methods Enzymol. 1982;85(Pt B):211–233. doi: 10.1016/0076-6879(82)85022-2. [DOI] [PubMed] [Google Scholar]
  25. Sato M., Leimbach G., Schwarz W. H., Pollard T. D. Mechanical properties of actin. J Biol Chem. 1985 Jul 15;260(14):8585–8592. [PubMed] [Google Scholar]
  26. Sato M., Schwarz W. H., Pollard T. D. Acanthamoeba profilin affects the mechanical properties of nonfilamentous actin. J Biol Chem. 1986 Aug 15;261(23):10701–10706. [PubMed] [Google Scholar]
  27. Sato M., Schwarz W. H., Pollard T. D. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. 1987 Feb 26-Mar 4Nature. 325(6107):828–830. doi: 10.1038/325828a0. [DOI] [PubMed] [Google Scholar]
  28. Sato M., Wong T. Z., Allen R. D. Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium. J Cell Biol. 1983 Oct;97(4):1089–1097. doi: 10.1083/jcb.97.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sato M., Wong T. Z., Brown D. T., Allen R. D. Rheological properties of living cytoplasm: a preliminary investigation of squid axoplasm (Loligo pealei). Cell Motil. 1984;4(1):7–23. doi: 10.1002/cm.970040103. [DOI] [PubMed] [Google Scholar]
  30. Schmid-Schoenbein H., Wells R., Schildkraut R. Microscopy and viscometry of blood flowing under uniform shear rate (rheoscopy). J Appl Physiol. 1969 May;26(5):674–678. doi: 10.1152/jappl.1969.26.5.674. [DOI] [PubMed] [Google Scholar]
  31. Singer R. H., Pudney J. A. Filament-directed intercellular contacts during differentiation of cultured chick myoblasts. Tissue Cell. 1984;16(1):17–29. doi: 10.1016/0040-8166(84)90015-6. [DOI] [PubMed] [Google Scholar]
  32. Soua Z., Porte F., Harricane M. C., Feinberg J., Capony J. P. Bovine serum brevin. Purification by hydrophobic chromatography and properties. Eur J Biochem. 1985 Dec 2;153(2):275–287. doi: 10.1111/j.1432-1033.1985.tb09298.x. [DOI] [PubMed] [Google Scholar]
  33. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  34. Stossel T. P. The actin system and the rheology of peripheral cytoplasm. Biorheology. 1986;23(6):621–631. doi: 10.3233/bir-1986-23613. [DOI] [PubMed] [Google Scholar]
  35. Tait J. F., Frieden C. Polymerization and gelation of actin studied by fluorescence photobleaching recovery. Biochemistry. 1982 Jul 20;21(15):3666–3674. doi: 10.1021/bi00258a022. [DOI] [PubMed] [Google Scholar]
  36. Tait J. F., Frieden C. Polymerization-induced changes in the fluorescence of actin labeled with iodoacetamidotetramethylrhodamine. Arch Biochem Biophys. 1982 Jun;216(1):133–141. doi: 10.1016/0003-9861(82)90197-7. [DOI] [PubMed] [Google Scholar]
  37. Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tellam R., Frieden C. Cytochalasin D and platelet gelsolin accelerate actin polymer formation. A model for regulation of the extent of actin polymer formation in vivo. Biochemistry. 1982 Jun 22;21(13):3207–3214. doi: 10.1021/bi00256a027. [DOI] [PubMed] [Google Scholar]
  39. WELLS R. E., Jr, DENTON R., MERRILL E. W. Measurement of viscosity of biologic fluids by cone plate viscometer. J Lab Clin Med. 1961 Apr;57:646–656. [PubMed] [Google Scholar]
  40. Weihing R. R. The filamins: properties and functions. Can J Biochem Cell Biol. 1985 Jun;63(6):397–413. doi: 10.1139/o85-059. [DOI] [PubMed] [Google Scholar]
  41. Zaner K. S., Stossel T. P. Physical basis of the rheologic properties of F-actin. J Biol Chem. 1983 Sep 25;258(18):11004–11009. [PubMed] [Google Scholar]
  42. Zaner K. S., Stossel T. P. Some perspectives on the viscosity of actin filaments. J Cell Biol. 1982 Jun;93(3):987–991. doi: 10.1083/jcb.93.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zaner K. S. The effect of the 540-kilodalton actin cross-linking protein, actin-binding protein, on the mechanical properties of F-actin. J Biol Chem. 1986 Jun 15;261(17):7615–7620. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES