Abstract
A synthetic peptide derived from the fibronectin cell-binding domain, GRGDSP, inhibits the adhesion of rat oligodendrocytes to a number of substrates. However, while GRGDSP inhibited the adhesion of cells in a short term adhesion assay, the presence of the peptide did not prevent cells from adhering and thriving in longer term culture. The morphological characteristics of individual cells cultured with 0.1 mg/ml GRGDSP were similar to untreated cultures; small rounded cell bodies radiating numerous fine processes. Peptide-treated cultures were inhibited in their ability to produce myelin specific components. The characteristic developmental peak in sulfolipid synthesis which occurs both in vivo and in vitro was completely inhibited when cells were cultured with GRGDSP. In addition, the synthesis of myelin basic protein was inhibited. Ultrastructurally, cells treated with GRGDSP showed a greatly reduced number of multilamellar myelin-like membrane figures than cells grown without peptide or those grown with GRADSP. Cultured oligodendrocytes did not become sensitive to inhibition of sulfolipid synthesis by GRGDSP until a period immediately preceding the peak in sulfolipid biosynthesis. The effects of pretreatment with peptide for 5 d before this time were completely reversible. Pretreatment which extended into the time of peak myelin synthesis resulted in permanent impairment in the cell's ability to synthesize sulfolipid. The oligodendrocyte's ability to synthesize a myelin-like membrane in culture is, in part, inherent since it occurs in the absence of neurons. The present results indicate that myelin membrane production is also subject to external control since it appears that occupancy of an RGD-dependent cell surface receptor during a critical period of in vitro development is required for the oligodendrocyte to produce myelin-like membrane.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal H. C., Burton R. M., Fishman M. A., Mitchell R. F., Prensky A. L. Partial characterization of a new myelin protein component. J Neurochem. 1972 Sep;19(9):2083–2089. doi: 10.1111/j.1471-4159.1972.tb05118.x. [DOI] [PubMed] [Google Scholar]
- Akiyama S. K., Yamada K. M. Fibronectin. Adv Enzymol Relat Areas Mol Biol. 1987;59:1–57. doi: 10.1002/9780470123058.ch1. [DOI] [PubMed] [Google Scholar]
- Ali I. U., Mautner V., Lanza R., Hynes R. O. Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein. Cell. 1977 May;11(1):115–126. doi: 10.1016/0092-8674(77)90322-1. [DOI] [PubMed] [Google Scholar]
- Ben-Ze'ev A., Robinson G. S., Bucher N. L., Farmer S. R. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2161–2165. doi: 10.1073/pnas.85.7.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boucaut J. C., Darribère T., Poole T. J., Aoyama H., Yamada K. M., Thiery J. P. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol. 1984 Nov;99(5):1822–1830. doi: 10.1083/jcb.99.5.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradel E. J., Prince F. P. Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons. J Neurosci Res. 1983;9(4):381–392. doi: 10.1002/jnr.490090404. [DOI] [PubMed] [Google Scholar]
- Cardwell M. C., Rome L. H. Evidence that an RGD-dependent receptor mediates the binding of oligodendrocytes to a novel ligand in a glial-derived matrix. J Cell Biol. 1988 Oct;107(4):1541–1549. doi: 10.1083/jcb.107.4.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W. T., Hasegawa E., Hasegawa T., Weinstock C., Yamada K. M. Development of cell surface linkage complexes in cultured fibroblasts. J Cell Biol. 1985 Apr;100(4):1103–1114. doi: 10.1083/jcb.100.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W. T., Wang J., Hasegawa T., Yamada S. S., Yamada K. M. Regulation of fibronectin receptor distribution by transformation, exogenous fibronectin, and synthetic peptides. J Cell Biol. 1986 Nov;103(5):1649–1661. doi: 10.1083/jcb.103.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enders G. C., Henson J. H., Millette C. F. Sertoli cell binding to isolated testicular basement membrane. J Cell Biol. 1986 Sep;103(3):1109–1119. doi: 10.1083/jcb.103.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
- Knapp P. E., Bartlett W. P., Skoff R. P. Cultured oligodendrocytes mimic in vivo phenotypic characteristics: cell shape, expression of myelin-specific antigens, and membrane production. Dev Biol. 1987 Apr;120(2):356–365. doi: 10.1016/0012-1606(87)90238-7. [DOI] [PubMed] [Google Scholar]
- Koper J. W., Hoeben R. C., Hochstenbach F. M., van Golde L. M., Lopes-Cardozo M. Effects of triiodothyronine on the synthesis of sulfolipids by oligodendrocyte-enriched glial cultures. Biochim Biophys Acta. 1986 Aug 1;887(3):327–334. doi: 10.1016/0167-4889(86)90162-x. [DOI] [PubMed] [Google Scholar]
- Lacovara J., Cramer E. B., Quigley J. P. Fibronectin enhancement of directed migration of B16 melanoma cells. Cancer Res. 1984 Apr;44(4):1657–1663. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li M. L., Aggeler J., Farson D. A., Hatier C., Hassell J., Bissell M. J. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):136–140. doi: 10.1073/pnas.84.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massa P. T., Mugnaini E. Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience. 1982 Feb;7(2):523–538. doi: 10.1016/0306-4522(82)90285-8. [DOI] [PubMed] [Google Scholar]
- Massa P. T., Mugnaini E. Cell-cell junctional interactions and characteristic plasma membrane features of cultured rat glial cells. Neuroscience. 1985 Feb;14(2):695–709. doi: 10.1016/0306-4522(85)90320-3. [DOI] [PubMed] [Google Scholar]
- McCarthy J. B., Furcht L. T. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J Cell Biol. 1984 Apr;98(4):1474–1480. doi: 10.1083/jcb.98.4.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKhann G. M., Ho W. The in vivo and in vitro synthesis of sulphatides during development. J Neurochem. 1967 Jul;14(7):717–724. doi: 10.1111/j.1471-4159.1967.tb10305.x. [DOI] [PubMed] [Google Scholar]
- Menko A. S., Boettiger D. Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell. 1987 Oct 9;51(1):51–57. doi: 10.1016/0092-8674(87)90009-2. [DOI] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
- Naidet C., Sémériva M., Yamada K. M., Thiery J. P. Peptides containing the cell-attachment recognition signal Arg-Gly-Asp prevent gastrulation in Drosophila embryos. Nature. 1987 Jan 22;325(6102):348–350. doi: 10.1038/325348a0. [DOI] [PubMed] [Google Scholar]
- Poduslo S. E., Miller K., Wolinsky J. S. The production of a membrane by purified oligodendroglia maintained in culture. Exp Cell Res. 1982 Jan;137(1):203–215. doi: 10.1016/0014-4827(82)90021-0. [DOI] [PubMed] [Google Scholar]
- Pytela R., Pierschbacher M. D., Argraves S., Suzuki S., Ruoslahti E. Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymol. 1987;144:475–489. doi: 10.1016/0076-6879(87)44196-7. [DOI] [PubMed] [Google Scholar]
- Rogalski A. A., Singer S. J. An integral glycoprotein associated with the membrane attachment sites of actin microfilaments. J Cell Biol. 1985 Sep;101(3):785–801. doi: 10.1083/jcb.101.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rome L. H., Bullock P. N., Chiappelli F., Cardwell M., Adinolfi A. M., Swanson D. Synthesis of a myelin-like membrane by oligodendrocytes in culture. J Neurosci Res. 1986;15(1):49–65. doi: 10.1002/jnr.490150106. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Hayman E. G., Pierschbacher M. D. Extracellular matrices and cell adhesion. Arteriosclerosis. 1985 Nov-Dec;5(6):581–594. doi: 10.1161/01.atv.5.6.581. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Pierschbacher M. D. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986 Feb 28;44(4):517–518. doi: 10.1016/0092-8674(86)90259-x. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
- Sarliève L. L., Fabre M., Susz J., Matthieu J. M. Investigations on myelination in vitro: IV. "Myelin-like" or premyelin structures in cultures of dissociated brain cells from 14--15-day-old embryonic mice. J Neurosci Res. 1983;10(2):191–210. doi: 10.1002/jnr.490100208. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Szuchet S., Yim S. H., Monsma S. Lipid metabolism of isolated oligodendrocytes maintained in long-term culture mimics events associated with myelinogenesis. Proc Natl Acad Sci U S A. 1983 Nov;80(22):7019–7023. doi: 10.1073/pnas.80.22.7019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vartanian T., Szuchet S., Dawson G., Campagnoni A. T. Oligodendrocyte adhesion activates protein kinase C-mediated phosphorylation of myelin basic protein. Science. 1986 Dec 12;234(4782):1395–1398. doi: 10.1126/science.2431483. [DOI] [PubMed] [Google Scholar]
- Walker A. G., Chapman J. A., Rumsby M. G. Immunocytochemical demonstration of glial-neuronal interactions and myelinogenesis in subcultures of rat brain cells. J Neuroimmunol. 1985 Aug;9(3-4):159–177. doi: 10.1016/s0165-5728(85)80016-3. [DOI] [PubMed] [Google Scholar]
- Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Yamada S. S., Pastan I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1217–1221. doi: 10.1073/pnas.73.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yim S. H., Szuchet S., Polak P. E. Cultured oligodendrocytes. A role for cell-substratum interaction in phenotypic expression. J Biol Chem. 1986 Sep 5;261(25):11808–11815. [PubMed] [Google Scholar]
- Zeller N. K., Behar T. N., Dubois-Dalcq M. E., Lazzarini R. A. The timely expression of myelin basic protein gene in cultured rat brain oligodendrocytes is independent of continuous neuronal influences. J Neurosci. 1985 Nov;5(11):2955–2962. doi: 10.1523/JNEUROSCI.05-11-02955.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]