Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Sep 1;107(3):1157–1165. doi: 10.1083/jcb.107.3.1157

Cyclic AMP-dependent mechanism regulates acetylcholine receptor function on bovine adrenal chromaffin cells and discriminates between new and old receptors

PMCID: PMC2115280  PMID: 2843549

Abstract

Bovine adrenal chromaffin cells have nicotinic acetylcholine receptors (AChRs) that mediate release of catecholamines from the cells in response to synaptic input, and resemble neuronal AChRs in pharmacology and antigenic profile. Results presented here show that a cAMP- dependent process enhances the function of adrenal chromaffin AChRs as a population in the plasma membrane. This was demonstrated by showing that cAMP analogues cause specific increases both in the level of nicotine-induced catecholamine release from the cells and in the level of the nicotine-induced conductance change occurring in the cells. Neither de novo synthesis of receptors nor transport of preexisting intracellular receptors to the plasma membrane is necessary for the enhancement. The responsiveness of AChRs to regulation by the cAMP- dependent process appears to depend on the length of time the receptors have been on the cell surface. AChRs newly inserted into the plasma membrane generate a greater nicotinic response than do older AChRs and, unlike older AChRs, their response to agonist is not enhanced after treatment of the cells with cAMP analogues. The findings indicate that the AChRs and/or associated components undergo a maturation in the plasma membrane that alters their function and their regulation by secondary messenger systems.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M., Boarder M. R. Secretion of [Met]enkephalyl-Arg6-Phe7-related peptides and catecholamines from bovine adrenal chromaffin cells: modification by changes in cyclic AMP and by treatment with reserpine. J Neurochem. 1987 Jul;49(1):208–215. doi: 10.1111/j.1471-4159.1987.tb03416.x. [DOI] [PubMed] [Google Scholar]
  2. Albuquerque E. X., Deshpande S. S., Aracava Y., Alkondon M., Daly J. W. A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. A study with forskolin and its analogs. FEBS Lett. 1986 Apr 7;199(1):113–120. doi: 10.1016/0014-5793(86)81235-2. [DOI] [PubMed] [Google Scholar]
  3. Amy C. M., Bennett E. L. Increased sodium ion conductance through nicotinic acetylcholine receptor channels in PC12 cells exposed to nerve growth factors. J Neurosci. 1983 Aug;3(8):1547–1553. doi: 10.1523/JNEUROSCI.03-08-01547.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armstrong D., Eckert R. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2518–2522. doi: 10.1073/pnas.84.8.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boulter J., Connolly J., Deneris E., Goldman D., Heinemann S., Patrick J. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7763–7767. doi: 10.1073/pnas.84.21.7763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., Patrick J. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. 1986 Jan 30-Feb 5Nature. 319(6052):368–374. doi: 10.1038/319368a0. [DOI] [PubMed] [Google Scholar]
  7. Brum G., Flockerzi V., Hofmann F., Osterrieder W., Trautwein W. Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflugers Arch. 1983 Jul;398(2):147–154. doi: 10.1007/BF00581064. [DOI] [PubMed] [Google Scholar]
  8. Cheek T. R., Burgoyne R. D. Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J Biol Chem. 1987 Aug 25;262(24):11663–11666. [PubMed] [Google Scholar]
  9. Choi D. W., Fischbach G. D. GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J Neurophysiol. 1981 Apr;45(4):605–620. doi: 10.1152/jn.1981.45.4.605. [DOI] [PubMed] [Google Scholar]
  10. Damle V. N., McLaughlin M., Karlin A. Bromoacetylcholine as an affinity label of the acetylcholine receptor from Torpedo californica. Biochem Biophys Res Commun. 1978 Oct 30;84(4):845–851. doi: 10.1016/0006-291x(78)91661-3. [DOI] [PubMed] [Google Scholar]
  11. Deneris E. S., Connolly J., Boulter J., Wada E., Wada K., Swanson L. W., Patrick J., Heinemann S. Primary structure and expression of beta 2: a novel subunit of neuronal nicotinic acetylcholine receptors. Neuron. 1988 Mar;1(1):45–54. doi: 10.1016/0896-6273(88)90208-5. [DOI] [PubMed] [Google Scholar]
  12. Ewald D. A., Williams A., Levitan I. B. Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature. 1985 Jun 6;315(6019):503–506. doi: 10.1038/315503a0. [DOI] [PubMed] [Google Scholar]
  13. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flockerzi V., Oeken H. J., Hofmann F., Pelzer D., Cavalié A., Trautwein W. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature. 1986 Sep 4;323(6083):66–68. doi: 10.1038/323066a0. [DOI] [PubMed] [Google Scholar]
  16. Goldman D., Deneris E., Luyten W., Kochhar A., Patrick J., Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell. 1987 Mar 27;48(6):965–973. doi: 10.1016/0092-8674(87)90705-7. [DOI] [PubMed] [Google Scholar]
  17. Higgins L. S., Berg D. K. A desensitized form of neuronal acetylcholine receptor detected by 3H-nicotine binding on bovine adrenal chromaffin cells. J Neurosci. 1988 Apr;8(4):1436–1446. doi: 10.1523/JNEUROSCI.08-04-01436.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Higgins L. S., Berg D. K. Immunological identification of a nicotinic acetylcholine receptor on bovine chromaffin cells. J Neurosci. 1987 Jun;7(6):1792–1798. doi: 10.1523/JNEUROSCI.07-06-01792.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Higgins L. S., Berg D. K. Metabolic stability and antigenic modulation of nicotinic acetylcholine receptors on bovine adrenal chromaffin cells. J Cell Biol. 1988 Sep;107(3):1147–1156. doi: 10.1083/jcb.107.3.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huganir R. L., Delcour A. H., Greengard P., Hess G. P. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature. 1986 Jun 19;321(6072):774–776. doi: 10.1038/321774a0. [DOI] [PubMed] [Google Scholar]
  21. Jacob M. H., Berg D. K. Effects of preganglionic denervation and postganglionic axotomy on acetylcholine receptors in the chick ciliary ganglion. J Cell Biol. 1987 Oct;105(4):1847–1854. doi: 10.1083/jcb.105.4.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leprince P. Chemical modification of the nicotinic cholinergic receptor of PC-12 nerve cell. Biochemistry. 1983 Nov 22;22(24):5551–5556. doi: 10.1021/bi00293a015. [DOI] [PubMed] [Google Scholar]
  23. Margiotta J. F., Berg D. K., Dionne V. E. Cyclic AMP regulates the proportion of functional acetylcholine receptors on chicken ciliary ganglion neurons. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8155–8159. doi: 10.1073/pnas.84.22.8155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Margiotta J. F., Berg D. K., Dionne V. E. The properties and regulation of functional acetylcholine receptors on chick ciliary ganglion neurons. J Neurosci. 1987 Nov;7(11):3612–3622. doi: 10.1523/JNEUROSCI.07-11-03612.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marriott D., Adams M., Boarder M. R. Effect of forskolin and prostaglandin E1 on stimulus secretion coupling in cultured bovine adrenal chromaffin cells. J Neurochem. 1988 Feb;50(2):616–623. doi: 10.1111/j.1471-4159.1988.tb02955.x. [DOI] [PubMed] [Google Scholar]
  26. McEachern A. E., Margiotta J. F., Berg D. K. gamma-Aminobutyric acid receptors on chick ciliary ganglion neurons in vivo and in cell culture. J Neurosci. 1985 Oct;5(10):2690–2695. doi: 10.1523/JNEUROSCI.05-10-02690.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McHugh E. M., McGee R., Jr Direct anesthetic-like effects of forskolin on the nicotinic acetylcholine receptors of PC12 cells. J Biol Chem. 1986 Mar 5;261(7):3103–3106. [PubMed] [Google Scholar]
  28. Middleton P., Jaramillo F., Schuetze S. M. Forskolin increases the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4967–4971. doi: 10.1073/pnas.83.13.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morita K., Dohi T., Kitayama S., Koyama Y., Tsujimoto A. Enhancement of stimulation-evoked catecholamine release from cultured bovine adrenal chromaffin cells by forskolin. J Neurochem. 1987 Jan;48(1):243–247. doi: 10.1111/j.1471-4159.1987.tb13154.x. [DOI] [PubMed] [Google Scholar]
  30. Morita K., Dohi T., Kitayama S., Koyama Y., Tsujimoto A. Stimulation-evoked Ca2+ fluxes in cultured bovine adrenal chromaffin cells are enhanced by forskolin. J Neurochem. 1987 Jan;48(1):248–252. doi: 10.1111/j.1471-4159.1987.tb13155.x. [DOI] [PubMed] [Google Scholar]
  31. Nef P., Oneyser C., Alliod C., Couturier S., Ballivet M. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 1988 Mar;7(3):595–601. doi: 10.1002/j.1460-2075.1988.tb02852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Patrick J., Stallcup B. alpha-Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line. J Biol Chem. 1977 Dec 10;252(23):8629–8633. [PubMed] [Google Scholar]
  33. Shuster M. J., Camardo J. S., Siegelbaum S. A., Kandel E. R. Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches. 1985 Jan 31-Feb 6Nature. 313(6001):392–395. doi: 10.1038/313392a0. [DOI] [PubMed] [Google Scholar]
  34. Smith M. A., Margiotta J. F., Berg D. K. Differential regulation of acetylcholine sensitivity and alpha-bungarotoxin-binding sites on ciliary ganglion neurons in cell culture. J Neurosci. 1983 Nov;3(11):2395–2402. doi: 10.1523/JNEUROSCI.03-11-02395.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stollberg J., Berg D. K. Neuronal acetylcholine receptors: fate of surface and internal pools in cell culture. J Neurosci. 1987 Jun;7(6):1809–1815. doi: 10.1523/JNEUROSCI.07-06-01809.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wada K., Ballivet M., Boulter J., Connolly J., Wada E., Deneris E. S., Swanson L. W., Heinemann S., Patrick J. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science. 1988 Apr 15;240(4850):330–334. doi: 10.1126/science.2832952. [DOI] [PubMed] [Google Scholar]
  37. Whiting P. J., Lindstrom J. M. Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry. 1986 Apr 22;25(8):2082–2093. doi: 10.1021/bi00356a037. [DOI] [PubMed] [Google Scholar]
  38. Whiting P., Lindstrom J. Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc Natl Acad Sci U S A. 1987 Jan;84(2):595–599. doi: 10.1073/pnas.84.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES