Abstract
Subcellular fractions were prepared from human neutrophils desensitized at 15 degrees C with stimulatory doses of the photoaffinity derivative F-Met-Leu-Phe-N epsilon-(2-(rho-azido[125I]salicylamido)ethyl-1,3'- dithio-propionyl)-Lys. The covalently labeled receptors were found in a membrane fraction of higher density than those from cells preexposed to ligand at 4 degrees C but not desensitized. The denser fraction (rho approximately equal to 1.155 g/cc) was the cellular locus of the membrane associated cytoskeletal proteins, actin, and fodrin, as detected immunologically on western blots. The light fraction (rho approximately equal to 1.135), cosedimented with neutrophil plasma membrane markers, plasma membrane guanyl nucleotide regulatory proteins, and several characteristic polypeptides identified by SDS- PAGE, including a major 72-kD species. The photoaffinity-labeled species in either case showed the same mobility on SDS-PAGE (Mr = 50,000-70,000) corresponding to previously reported values for N-formyl chemotactic receptors. These labeled receptors were sensitive to proteolysis after exposure of the intact photoaffinity-labeled cells to papain at 4 degrees C. We conclude that (a) the fractions isolated are probably derived from different lateral microdomains of the surface of human neutrophils; (b) the higher density fraction contains occupied N- formyl-chemotactic receptors previously shown to have been converted, to a high affinity, slowly dissociating form coisolating with neutrophil cytoskeleton and implicated in the termination of formyl peptide-induced neutrophil activation; and (c) the translocation of receptors to these microdomains may serve to compartmentalize receptors and perhaps regulate the interaction of the receptor/G-protein transduction pair.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. A., Tolley J. O., Jesaitis A. J. Preparation and properties of an improved photoaffinity ligand for the N-formyl peptide receptor. Biochim Biophys Acta. 1986 Jul 16;882(3):271–280. doi: 10.1016/0304-4165(86)90248-5. [DOI] [PubMed] [Google Scholar]
- Allen R. A., Traynor A. E., Omann G. M., Jesaitis A. J. The chemotactic peptide receptor. A model for future understanding of chemotactic disorders. Hematol Oncol Clin North Am. 1988 Mar;2(1):33–59. [PubMed] [Google Scholar]
- Berkow R. L., Tzeng D. Y., Williams L. V., Baehner R. L. The comparative responses of human polymorphonuclear leukocytes obtained by counterflow centrifugal elutriation and Ficoll-Hypaque density centrifugation. I. Resting volume, stimulus-induced superoxide production, and primary and specific granule release. J Lab Clin Med. 1983 Nov;102(5):732–742. [PubMed] [Google Scholar]
- Bokoch G. M., Sklar L. A., Smolen J. E. Guanine nucleotide regulatory proteins as transducers of receptor-stimulated neutrophil activation. Int J Tissue React. 1987;9(4):285–293. [PubMed] [Google Scholar]
- Borregaard N., Miller L. J., Springer T. A. Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science. 1987 Sep 4;237(4819):1204–1206. doi: 10.1126/science.3629236. [DOI] [PubMed] [Google Scholar]
- Byers H. R., Fujiwara K. Stress fibers in cells in situ: immunofluorescence visualization with antiactin, antimyosin, and anti-alpha-actinin. J Cell Biol. 1982 Jun;93(3):804–811. doi: 10.1083/jcb.93.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolmatch B., Niedel J. Formyl peptide chemotactic receptor. Evidence for an active proteolytic fragment. J Biol Chem. 1983 Jun 25;258(12):7570–7577. [PubMed] [Google Scholar]
- Goppelt M., Eichhorn R., Krebs G., Resch K. Lipid composition of functional domains of the lymphocyte plasma membrane. Biochim Biophys Acta. 1986 Jan 29;854(2):184–190. doi: 10.1016/0005-2736(86)90109-4. [DOI] [PubMed] [Google Scholar]
- Harris A. S., Green L. A., Ainger K. J., Morrow J. S. Mechanism of cytoskeletal regulation (I): functional differences correlate with antigenic dissimilarity in human brain and erythrocyte spectrin. Biochim Biophys Acta. 1985 Aug 8;830(2):147–158. doi: 10.1016/0167-4838(85)90022-6. [DOI] [PubMed] [Google Scholar]
- Jesaitis A. J., Naemura J. R., Painter R. G., Schmitt M., Sklar L. A., Cochrane C. G. The fate of the N-formyl-chemotactic peptide receptor in stimulated human granulocytes: subcellular fractionation studies. J Cell Biochem. 1982;20(2):177–191. doi: 10.1002/jcb.240200209. [DOI] [PubMed] [Google Scholar]
- Jesaitis A. J., Naemura J. R., Painter R. G., Sklar L. A., Cochrane C. G. Intracellular localization of N-formyl chemotactic receptor and Mg2+ dependent ATPase in human granulocytes. Biochim Biophys Acta. 1982 Dec 17;719(3):556–568. doi: 10.1016/0304-4165(82)90246-x. [DOI] [PubMed] [Google Scholar]
- Jesaitis A. J., Naemura J. R., Painter R. G., Sklar L. A., Cochrane C. G. The fate of an N-formylated chemotactic peptide in stimulated human granulocytes. Subcellular fractionation studies. J Biol Chem. 1983 Feb 10;258(3):1968–1977. [PubMed] [Google Scholar]
- Jesaitis A. J., Naemura J. R., Sklar L. A., Cochrane C. G., Painter R. G. Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: formation of high-affinity ligand-receptor complexes in transient association with cytoskeleton. J Cell Biol. 1984 Apr;98(4):1378–1387. doi: 10.1083/jcb.98.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jesaitis A. J., Tolley J. O., Allen R. A. Receptor-cytoskeleton interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes. J Biol Chem. 1986 Oct 15;261(29):13662–13669. [PubMed] [Google Scholar]
- Jesaitis A. J., Tolley J. O., Painter R. G., Sklar L. A., Cochrane C. G. Membrane-cytoskeleton interactions and the regulation of chemotactic peptide-induced activation of human granulocytes: the effects of dihydrocytochalasin B. J Cell Biochem. 1985;27(3):241–253. doi: 10.1002/jcb.240270306. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Manara F. S., Schneider D. L. The activation of the human neutrophil respiratory burst occurs only at temperatures above 17 degrees C: evidence that activation requires membrane fusion. Biochem Biophys Res Commun. 1985 Oct 30;132(2):696–701. doi: 10.1016/0006-291x(85)91188-x. [DOI] [PubMed] [Google Scholar]
- Niedel J., Davis J., Cuatrecasas P. Covalent affinity labeling of the formyl peptide chemotactic receptor. J Biol Chem. 1980 Aug 10;255(15):7063–7066. [PubMed] [Google Scholar]
- Northup J. K., Smigel M. D., Gilman A. G. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J Biol Chem. 1982 Oct 10;257(19):11416–11423. [PubMed] [Google Scholar]
- Painter R. G., Zahler-Bentz K., Dukes R. E. Regulation of the affinity state of the N-formylated peptide receptor of neutrophils: role of guanine nucleotide-binding proteins and the cytoskeleton. J Cell Biol. 1987 Dec;105(6 Pt 2):2959–2971. doi: 10.1083/jcb.105.6.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkos C. A., Allen R. A., Cochrane C. G., Jesaitis A. J. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest. 1987 Sep;80(3):732–742. doi: 10.1172/JCI113128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkos C. A., Cochrane C. G., Schmitt M., Jesaitis A. J. Regulation of the oxidative response of human granulocytes to chemoattractants. No evidence for stimulated traffic of redox enzymes between endo and plasma membranes. J Biol Chem. 1985 Jun 10;260(11):6541–6547. [PubMed] [Google Scholar]
- Schmitt M., Painter R. G., Jesaitis A. J., Preissner K., Sklar L. A., Cochrane C. G. Photoaffinity labeling of the N-formyl peptide receptor binding site of intact human polymorphonuclear leukocytes. A label suitable for following the fate of the receptor-ligand complex. J Biol Chem. 1983 Jan 10;258(1):649–654. [PubMed] [Google Scholar]
- Showell H. J., Williams D., Becker E. L., Naccache P. H., Sha'afi R. Desensitization and deactivation of the secretory responsiveness of rabbit neutrophils induced by the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine. J Reticuloendothel Soc. 1979 Feb;25(2):139–150. [PubMed] [Google Scholar]
- Sklar L. A., Bokoch G. M., Button D., Smolen J. E. Regulation of ligand-receptor dynamics by guanine nucleotides. Real-time analysis of interconverting states for the neutrophil formyl peptide receptor. J Biol Chem. 1987 Jan 5;262(1):135–139. [PubMed] [Google Scholar]
- Sklar L. A., Finney D. A., Oades Z. G., Jesaitis A. J., Painter R. G., Cochrane C. G. The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol Chem. 1984 May 10;259(9):5661–5669. [PubMed] [Google Scholar]
- Sklar L. A., Jesaitis A. J., Painter R. G., Cochrane C. G. Ligand/receptor internalization: a spectroscopic analysis and a comparison of ligand binding, cellular response, and internalization by human neutrophils. J Cell Biochem. 1982;20(2):193–202. doi: 10.1002/jcb.240200210. [DOI] [PubMed] [Google Scholar]
- Stewart D. I., Crawford N. Redistribution of membrane-bound and cytosolic action in rabbit polymorphonuclear leucocytes during phagocytosis. Biochem J. 1985 Feb 1;225(3):807–814. doi: 10.1042/bj2250807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolley J. O., Omann G. M., Jesaitis A. J. A high-yield, high-purity elutriation method for preparing human granulocytes demonstrating enhanced experimental lifetimes. J Leukoc Biol. 1987 Jul;42(1):43–50. doi: 10.1002/jlb.42.1.43. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H., Tranquillo A. W. Chemotactic peptide binding by rabbit polymorphonuclear leukocytes. Presence of two compartments having similar affinities but different kinetics. J Biol Chem. 1986 Apr 25;261(12):5283–5288. [PubMed] [Google Scholar]