Abstract
The response of human neutrophils to N-formyl peptides were studied under conditions where ligand binding was controlled by infusing a cell suspension with the peptide over a time period comparable to the normal half-time for binding. Receptor occupancy was measured in real time with a fluorescently labeled peptide using flow cytometry. This binding was approximated by a simple reversible model using typical on (7 X 10(8) M- min-1) and off (0.35/min) rate constants and the infusion rates (0.02-0.2 nM/min). Under conditions of stimulus infusion intracellular calcium elevation, superoxide generation, and right angle light scatter and F-actin formation were measured. As the infusion rate was decreased into the range of 10 pM/min, lowering the rate of increase of receptor occupancy to approximately 0.5% per min, the calcium and right angle light scatter responses elongated in time and decreased in magnitude. Superoxide generation decreased below infusion rates of approximately 100 pM/min (occupancy increasing at a rate in the range of 5% per min). This behavior could contribute to differences between chemotactic responses, which appear to require low rates of receptor occupancy over long periods, and bactericidal or inflammatory responses (free radical generation and degranulation), which require bursts of occupancy of several percent of the receptors.
Full Text
The Full Text of this article is available as a PDF (929.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker E. L. A multifunctional receptor on the neutrophil for synthetic chemotactic oligopeptides. J Reticuloendothel Soc. 1979 Dec;26(Suppl):701–709. [PubMed] [Google Scholar]
- Berkow R. L., Tzeng D. Y., Williams L. V., Baehner R. L. The comparative responses of human polymorphonuclear leukocytes obtained by counterflow centrifugal elutriation and Ficoll-Hypaque density centrifugation. I. Resting volume, stimulus-induced superoxide production, and primary and specific granule release. J Lab Clin Med. 1983 Nov;102(5):732–742. [PubMed] [Google Scholar]
- Clark R. A. Chemotactic factors trigger their own oxidative inactivation by human neutrophils. J Immunol. 1982 Dec;129(6):2725–2728. [PubMed] [Google Scholar]
- Connelly J. C., Skidgel R. A., Schulz W. W., Johnson A. R., Erdös E. G. Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8737–8741. doi: 10.1073/pnas.82.24.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Togni P., Bellavite P., Della Bianca V., Grzeskowiak M., Rossi F. Intensity and kinetics of the respiratory burst of human neutrophils in relation to receptor occupancy and rate of occupation by formylmethionylleucylphenylalanine. Biochim Biophys Acta. 1985 Jan 28;838(1):12–22. doi: 10.1016/0304-4165(85)90244-2. [DOI] [PubMed] [Google Scholar]
- De Togni P., Della Bianca V., Grzeskowiak M., Di Virgilio F., Rossi F. Mechanism of desensitization of neutrophil response to N-formylmethionylleucylphenylalanine by slow rate of receptor occupancy. Studies on changes in Ca2+ concentration and phosphatidylinositol turnover. Biochim Biophys Acta. 1985 Jan 28;838(1):23–31. doi: 10.1016/0304-4165(85)90245-4. [DOI] [PubMed] [Google Scholar]
- Devreotes P. N., Sherring J. A. Kinetics and concentration dependence of reversible cAMP-induced modification of the surface cAMP receptor in Dictyostelium. J Biol Chem. 1985 May 25;260(10):6378–6384. [PubMed] [Google Scholar]
- Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
- Heck G. L., Erickson R. P. A rate theory of gustatory stimulation. Behav Biol. 1973 Jun;8(6):687–712. doi: 10.1016/s0091-6773(73)80112-9. [DOI] [PubMed] [Google Scholar]
- Henson P. M., Oades Z. G. Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates. Secretion of granule constituents and increased oxidation of glucose. J Clin Invest. 1975 Oct;56(4):1053–1061. doi: 10.1172/JCI108152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard T. H., Meyer W. H. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J Cell Biol. 1984 Apr;98(4):1265–1271. doi: 10.1083/jcb.98.4.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hugli T. E., Müller-Eberhard H. J. Anaphylatoxins: C3a and C5a. Adv Immunol. 1978;26:1–53. doi: 10.1016/s0065-2776(08)60228-x. [DOI] [PubMed] [Google Scholar]
- Hyslop P. A., Sklar L. A. A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes. Anal Biochem. 1984 Aug 15;141(1):280–286. doi: 10.1016/0003-2697(84)90457-3. [DOI] [PubMed] [Google Scholar]
- Kishimoto A., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem. 1980 Mar 25;255(6):2273–2276. [PubMed] [Google Scholar]
- Koo C., Lefkowitz R. J., Snyderman R. Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes. J Clin Invest. 1983 Sep;72(3):748–753. doi: 10.1172/JCI111045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koo C., Lefkowitz R. J., Snyderman R. The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem Biophys Res Commun. 1982 May 31;106(2):442–449. doi: 10.1016/0006-291x(82)91130-5. [DOI] [PubMed] [Google Scholar]
- Korchak H. M., Wilkenfeld C., Rich A. M., Radin A. R., Vienne K., Rutherford L. E. Stimulus response coupling in the human neutrophil. Differential requirements for receptor occupancy in neutrophil responses to a chemoattractant. J Biol Chem. 1984 Jun 25;259(12):7439–7445. [PubMed] [Google Scholar]
- Marasco W. A., Phan S. H., Krutzsch H., Showell H. J., Feltner D. E., Nairn R., Becker E. L., Ward P. A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984 May 10;259(9):5430–5439. [PubMed] [Google Scholar]
- Naccache P. H., Molski T. F., Borgeat P., White J. R., Sha'afi R. I. Phorbol esters inhibit the fMet-Leu-Phe- and leukotriene B4-stimulated calcium mobilization and enzyme secretion in rabbit neutrophils. J Biol Chem. 1985 Feb 25;260(4):2125–2131. [PubMed] [Google Scholar]
- Olsson I., Venge P. The role of the human neutrophil in the inflammatory reaction. Allergy. 1980 Jan;35(1):1–13. doi: 10.1111/j.1398-9995.1980.tb01711.x. [DOI] [PubMed] [Google Scholar]
- Omann G. M., Allen R. A., Bokoch G. M., Painter R. G., Traynor A. E., Sklar L. A. Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev. 1987 Jan;67(1):285–322. doi: 10.1152/physrev.1987.67.1.285. [DOI] [PubMed] [Google Scholar]
- Omann G. M., Coppersmith W., Finney D. A., Sklar L. A. A convenient on-line device for reagent addition, sample mixing, and temperature control of cell suspensions in flow cytometry. Cytometry. 1985 Jan;6(1):69–73. doi: 10.1002/cyto.990060113. [DOI] [PubMed] [Google Scholar]
- Omann G. M., Traynor A. E., Harris A. L., Sklar L. A. LTB4 induced activation signals and responses in neutrophils are short-lived compared to formylpeptide. J Immunol. 1987 Apr 15;138(8):2626–2632. [PubMed] [Google Scholar]
- Poole B., Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981 Sep;90(3):665–669. doi: 10.1083/jcb.90.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pozzan T., Lew D. P., Wollheim C. B., Tsien R. Y. Is cytosolic ionized calcium regulating neutrophil activation? Science. 1983 Sep 30;221(4618):1413–1415. doi: 10.1126/science.6310757. [DOI] [PubMed] [Google Scholar]
- Prentki M., Wollheim C. B., Lew P. D. Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-triphosphate. J Biol Chem. 1984 Nov 25;259(22):13777–13782. [PubMed] [Google Scholar]
- Rossi F., De Togni P., Bellavite P., Della Bianca V., Grzeskowiak M. Relationship between the binding of N-formylmethionylleucylphenylalanine and the respiratory response in human neutrophils. Biochim Biophys Acta. 1983 Jul 29;758(2):168–175. doi: 10.1016/0304-4165(83)90298-2. [DOI] [PubMed] [Google Scholar]
- Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
- Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
- Sklar L. A., Bokoch G. M., Button D., Smolen J. E. Regulation of ligand-receptor dynamics by guanine nucleotides. Real-time analysis of interconverting states for the neutrophil formyl peptide receptor. J Biol Chem. 1987 Jan 5;262(1):135–139. [PubMed] [Google Scholar]
- Sklar L. A., Finney D. A., Oades Z. G., Jesaitis A. J., Painter R. G., Cochrane C. G. The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol Chem. 1984 May 10;259(9):5661–5669. [PubMed] [Google Scholar]
- Sklar L. A., Hyslop P. A., Oades Z. G., Omann G. M., Jesaitis A. J., Painter R. G., Cochrane C. G. Signal transduction and ligand-receptor dynamics in the human neutrophil. Transient responses and occupancy-response relations at the formyl peptide receptor. J Biol Chem. 1985 Sep 25;260(21):11461–11467. [PubMed] [Google Scholar]
- Sklar L. A., Jesaitis A. J., Painter R. G., Cochrane C. G. The kinetics of neutrophil activation. The response to chemotactic peptides depends upon whether ligand-receptor interaction is rate-limiting. J Biol Chem. 1981 Oct 10;256(19):9909–9914. [PubMed] [Google Scholar]
- Sklar L. A., Oades Z. G., Finney D. A. Neutrophil degranulation detected by right angle light scattering: spectroscopic methods suitable for simultaneous analyses of degranulation or shape change, elastase release, and cell aggregation. J Immunol. 1984 Sep;133(3):1483–1487. [PubMed] [Google Scholar]
- Sklar L. A., Omann G. M., Painter R. G. Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular Ca++. J Cell Biol. 1985 Sep;101(3):1161–1166. doi: 10.1083/jcb.101.3.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sklar L. A., Sayre J., McNeil V. M., Finney D. A. Competitive binding kinetics in ligand-receptor-competitor systems. Rate parameters for unlabeled ligands for the formyl peptide receptor. Mol Pharmacol. 1985 Oct;28(4):323–330. [PubMed] [Google Scholar]
- Tecoma E. S., Motulsky H. J., Traynor A. E., Omann G. M., Muller H., Sklar L. A. Transient catecholamine modulation of neutrophil activation: kinetic and intracellular aspects of isoproterenol action. J Leukoc Biol. 1986 Nov;40(5):629–644. doi: 10.1002/jlb.40.5.629. [DOI] [PubMed] [Google Scholar]
- Tolley J. O., Omann G. M., Jesaitis A. J. A high-yield, high-purity elutriation method for preparing human granulocytes demonstrating enhanced experimental lifetimes. J Leukoc Biol. 1987 Jul;42(1):43–50. doi: 10.1002/jlb.42.1.43. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Haastert P. J., Van Der Meer R. C., Konijn T. M. Evidence that the rate of association of adenosine 3',5'-monophosphate to its chemotactic receptor induces phosphodiesterase activity in Dictyostelium discoideum. J Bacteriol. 1981 Jul;147(1):170–175. doi: 10.1128/jb.147.1.170-175.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wurster B., Butz U. A study on sensing and adaptation in Dictyostelium discoideum: guanosine 3',5'-phosphate accumulation and light-scattering responses. J Cell Biol. 1983 Jun;96(6):1566–1570. doi: 10.1083/jcb.96.6.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuli I., Snyderman R. Extensive hydrolysis of N-formyl-L-methionyl-L-leucyl-L-[3H] phenylalanine by human polymorphonuclear leukocytes. A potential mechanism for modulation of the chemoattractant signal. J Biol Chem. 1986 Apr 15;261(11):4902–4908. [PubMed] [Google Scholar]
- Yuli I., Snyderman R. Rapid changes in light scattering from human polymorphonuclear leukocytes exposed to chemoattractants. Discrete responses correlated with chemotactic and secretory functions. J Clin Invest. 1984 May;73(5):1408–1417. doi: 10.1172/JCI111345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zavoico G. B., Halenda S. P., Sha'afi R. I., Feinstein M. B. Phorbol myristate acetate inhibits thrombin-stimulated Ca2+ mobilization and phosphatidylinositol 4,5-bisphosphate hydrolysis in human platelets. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3859–3862. doi: 10.1073/pnas.82.11.3859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977 Nov;75(2 Pt 1):606–616. doi: 10.1083/jcb.75.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H. Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature. 1974 May 31;249(456):450–452. doi: 10.1038/249450a0. [DOI] [PubMed] [Google Scholar]