Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Sep 1;107(3):1001–1009. doi: 10.1083/jcb.107.3.1001

Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C)

PMCID: PMC2115295  PMID: 2971069

Abstract

We recently found that the brain cytosolic microtubule-associated protein 1C (MAP 1C) is a microtubule-activated ATPase, capable of translocating microtubules in vitro in the direction corresponding to retrograde transport. (Paschal, B. M., H. S. Shpetner, and R. B. Vallee. 1987b. J. Cell Biol. 105:1273-1282; Paschal, B. M., and R. B. Vallee. 1987. Nature [Lond.]. 330:181-183.). Biochemical analysis of this protein (op. cit.) as well as scanning transmission electron microscopy revealed that MAP 1C is a brain cytoplasmic form of the ciliary and flagellar ATPase dynein (Vallee, R. B., J. S. Wall, B. M. Paschal, and H. S. Shpetner. 1988. Nature [Lond.]. 332:561-563). We have now characterized the ATPase activity of the brain enzyme in detail. We found that microtubule activation required polymeric tubulin and saturated with increasing tubulin concentration. The maximum activity at saturating tubulin (Vmax) varied from 186 to 239 nmol/min per mg. At low ionic strength, the Km for microtubules was 0.16 mg/ml tubulin, substantially lower than that previously reported for axonemal dynein. The microtubule-stimulated activity was extremely sensitive to changes in ionic strength and sulfhydryl oxidation state, both of which primarily affected the microtubule concentrations required for half- maximal activation. In a number of respects the brain dynein was enzymatically similar to both axonemal and egg dyneins. Thus, the ATPase required divalent cations, calcium stimulating activity less effectively than magnesium. The MgATPase was inhibited by metavandate (Ki = 5-10 microM for the microtubule-stimulated activity), 1 mM NEM, and 1 mM EHNA. In contrast to other dyneins, the brain enzyme hydrolyzed CTP, TTP, and GTP at higher rates than ATP. Thus, the enzymological properties of the brain cytoplasmic dynein are clearly related to those of other dyneins, though the brain enzyme is unique in its substrate specificity and in its high sensitivity to stimulation by microtubules.

Full Text

The Full Text of this article is available as a PDF (996.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai D. J., Wilson L. A latent activity dynein-like cytoplasmic magnesium adenosine triphosphatase. J Biol Chem. 1985 Jan 25;260(2):699–702. [PubMed] [Google Scholar]
  2. Auclair W., Siegel B. W. Cilia regeneration in the sea urchin embryo: evidence for a pool of ciliary proteins. Science. 1966 Nov 18;154(3751):913–915. doi: 10.1126/science.154.3751.913. [DOI] [PubMed] [Google Scholar]
  3. Burns R. G., Pollard T. D. A dynein-like protein from brain. FEBS Lett. 1974 Apr 1;40(2):274–280. doi: 10.1016/0014-5793(74)80243-7. [DOI] [PubMed] [Google Scholar]
  4. Chalovich J. M., Eisenberg E. Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J Biol Chem. 1982 Mar 10;257(5):2432–2437. [PMC free article] [PubMed] [Google Scholar]
  5. Collins C. A., Vallee R. B. A microtubule-activated ATPase from sea urchin eggs, distinct from cytoplasmic dynein and kinesin. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4799–4803. doi: 10.1073/pnas.83.13.4799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins C. A., Vallee R. B. Characterization of the sea-urchin egg microtubule-activated ATPase. J Cell Sci Suppl. 1986;5:197–204. doi: 10.1242/jcs.1986.supplement_5.13. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg E., Moos C. The adenosine triphosphatase activity of acto-heavy meromyosin. A kinetic analysis of actin activation. Biochemistry. 1968 Apr;7(4):1486–1489. doi: 10.1021/bi00844a035. [DOI] [PubMed] [Google Scholar]
  8. Fujii T., Kondo Y., Kumasaka M., Suzuki T., Ohki K. Stimulation of tubulin-dependent ATPase activity in microtubule proteins from porcine brain by taxol. J Neurochem. 1983 Sep;41(3):716–722. doi: 10.1111/j.1471-4159.1983.tb04799.x. [DOI] [PubMed] [Google Scholar]
  9. Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., Shelanski M. L. A dynein-like protein associated with neurotubules. FEBS Lett. 1974 Apr 1;40(2):281–286. doi: 10.1016/0014-5793(74)80244-9. [DOI] [PubMed] [Google Scholar]
  10. Gelfand V. I., Gyoeva F. K., Rosenblat V. A., Shanina N. A. A new ATPase in cytoplasmic microtubule preparations. FEBS Lett. 1978 Apr 15;88(2):197–200. doi: 10.1016/0014-5793(78)80172-0. [DOI] [PubMed] [Google Scholar]
  11. Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibbons I. R., Fronk E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):187–196. [PubMed] [Google Scholar]
  13. Gibbons I. R. Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J Biol Chem. 1966 Dec 10;241(23):5590–5596. [PubMed] [Google Scholar]
  14. Hisanaga S., Sakai H. Cytoplasmic dynein of the sea urchin egg. II. Purification, characterization and interactions with microtubules and Ca-calmodulin. J Biochem. 1983 Jan;93(1):87–98. doi: 10.1093/oxfordjournals.jbchem.a134182. [DOI] [PubMed] [Google Scholar]
  15. Hollenbeck P. J., Suprynowicz F., Cande W. Z. Cytoplasmic dynein-like ATPase cross-links microtubules in an ATP-sensitive manner. J Cell Biol. 1984 Oct;99(4 Pt 1):1251–1258. doi: 10.1083/jcb.99.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu Rev Biophys Biophys Chem. 1985;14:161–188. doi: 10.1146/annurev.bb.14.060185.001113. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi T., Martensen T., Nath J., Flavin M. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1313–1318. doi: 10.1016/0006-291x(78)91279-2. [DOI] [PubMed] [Google Scholar]
  18. Kuriyama R. In vitro polymerization of marine egg tubulin into microtubules. J Biochem. 1977 Apr;81(4):1115–1125. doi: 10.1093/oxfordjournals.jbchem.a131536. [DOI] [PubMed] [Google Scholar]
  19. Kuznetsov S. A., Gelfand V. I. Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8530–8534. doi: 10.1073/pnas.83.22.8530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lye R. J., Porter M. E., Scholey J. M., McIntosh J. R. Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans. Cell. 1987 Oct 23;51(2):309–318. doi: 10.1016/0092-8674(87)90157-7. [DOI] [PubMed] [Google Scholar]
  23. Murphy D. B., Hiebsch R. R., Wallis K. T. Identity and Origin of the ATPase activity associated with neuronal microtubules. I. The ATPase activity is associated with membrane vesicles. J Cell Biol. 1983 May;96(5):1298–1305. doi: 10.1083/jcb.96.5.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Omoto C. K., Johnson K. A. Activation of the dynein adenosinetriphosphatase by microtubules. Biochemistry. 1986 Jan 28;25(2):419–427. doi: 10.1021/bi00350a022. [DOI] [PubMed] [Google Scholar]
  25. Pallini V., Mencarelli C., Bracci L., Contorni M., Ruggiero P., Tiezzi A., Manetti R. Cytoplasmic nucleoside-triphosphatase similar to axonemal dynein occur widely in different cell types. J Submicrosc Cytol. 1983 Jan;15(1):229–235. [PubMed] [Google Scholar]
  26. Paschal B. M., King S. M., Moss A. G., Collins C. A., Vallee R. B., Witman G. B. Isolated flagellar outer arm dynein translocates brain microtubules in vitro. Nature. 1987 Dec 17;330(6149):672–674. doi: 10.1038/330672a0. [DOI] [PubMed] [Google Scholar]
  27. Paschal B. M., Shpetner H. S., Vallee R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol. 1987 Sep;105(3):1273–1282. doi: 10.1083/jcb.105.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paschal B. M., Vallee R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. doi: 10.1038/330181a0. [DOI] [PubMed] [Google Scholar]
  29. Penningroth S. M. Erythro-9-[3-(2-hydroxynonyl)]adenine and vanadate as probes for microtubule-based cytoskeletal mechanochemistry. Methods Enzymol. 1986;134:477–487. doi: 10.1016/0076-6879(86)34114-4. [DOI] [PubMed] [Google Scholar]
  30. Pfister K. K., Haley B. E., Witman G. B. Labeling of Chlamydomonas 18 S dynein polypeptides by 8-azidoadenosine 5'-triphosphate, a photoaffinity analog of ATP. J Biol Chem. 1985 Oct 15;260(23):12844–12850. [PubMed] [Google Scholar]
  31. Pfister K. K., Haley B. E., Witman G. B. The photoaffinity probe 8-azidoadenosine 5'-triphosphate selectively labels the heavy chain of Chlamydomonas 12 S dynein. J Biol Chem. 1984 Jul 10;259(13):8499–8504. [PubMed] [Google Scholar]
  32. Pfister K. K., Witman G. B. Subfractionation of Chlamydomonas 18 S dynein into two unique subunits containing ATPase activity. J Biol Chem. 1984 Oct 10;259(19):12072–12080. [PubMed] [Google Scholar]
  33. Porter M. E., Johnson K. A. Characterization of the ATP-sensitive binding of Tetrahymena 30 S dynein to bovine brain microtubules. J Biol Chem. 1983 May 25;258(10):6575–6581. [PubMed] [Google Scholar]
  34. Porter M. E., Scholey J. M., Stemple D. L., Vigers G. P., Vale R. D., Sheetz M. P., McIntosh J. R. Characterization of the microtubule movement produced by sea urchin egg kinesin. J Biol Chem. 1987 Feb 25;262(6):2794–2802. [PubMed] [Google Scholar]
  35. Pratt M. M., Hisanaga S., Begg D. A. An improved purification method for cytoplasmic dynein. J Cell Biochem. 1984;26(1):19–33. doi: 10.1002/jcb.240260103. [DOI] [PubMed] [Google Scholar]
  36. Pratt M. M. Homology of egg and flagellar dynein. Comparison of ATP-binding sites and primary structure. J Biol Chem. 1986 Jan 15;261(2):956–964. [PubMed] [Google Scholar]
  37. Pratt M. M. The identification of a dynein ATPase in unfertilized sea urchin eggs. Dev Biol. 1980 Feb;74(2):364–378. doi: 10.1016/0012-1606(80)90438-8. [DOI] [PubMed] [Google Scholar]
  38. Sale W. S., Satir P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci U S A. 1977 May;74(5):2045–2049. doi: 10.1073/pnas.74.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Scholey J. M., Neighbors B., McIntosh J. R., Salmon E. D. Isolation of microtubules and a dynein-like MgATPase from unfertilized sea urchin eggs. J Biol Chem. 1984 May 25;259(10):6516–6525. [PubMed] [Google Scholar]
  40. Shimizu T., Kimura I. Effects of N-ethylmaleimide on dynein adenosinetriphosphatase activity and its recombining ability with outer fibers. J Biochem. 1974 Nov;76(5):1001–1008. [PubMed] [Google Scholar]
  41. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  42. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
  44. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell. 1985 Mar;40(3):559–569. doi: 10.1016/0092-8674(85)90204-1. [DOI] [PubMed] [Google Scholar]
  45. Vale R. D., Toyoshima Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell. 1988 Feb 12;52(3):459–469. doi: 10.1016/s0092-8674(88)80038-2. [DOI] [PubMed] [Google Scholar]
  46. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vallee R. B., Bloom G. S. Isolation of sea urchin egg microtubules with taxol and identification of mitotic spindle microtubule-associated proteins with monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6259–6263. doi: 10.1073/pnas.80.20.6259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vallee R. B. Reversible assembly purification of microtubules without assembly-promoting agents and further purification of tubulin, microtubule-associated proteins, and MAP fragments. Methods Enzymol. 1986;134:89–104. doi: 10.1016/0076-6879(86)34078-3. [DOI] [PubMed] [Google Scholar]
  49. Vallee R. B., Wall J. S., Paschal B. M., Shpetner H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature. 1988 Apr 7;332(6164):561–563. doi: 10.1038/332561a0. [DOI] [PubMed] [Google Scholar]
  50. Wagner P. D., Weeds A. G. Determination of the association of myosin subfragment 1 with actin in the presence of ATP. Biochemistry. 1979 May 29;18(11):2260–2266. doi: 10.1021/bi00578a020. [DOI] [PubMed] [Google Scholar]
  51. White H. D., Coughlin B. A., Purich D. L. Adenosine triphosphatase activity of bovine brain microtubule protein. J Biol Chem. 1980 Jan 25;255(2):486–491. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES