Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Sep 1;107(3):1123–1138. doi: 10.1083/jcb.107.3.1123

Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes

PMCID: PMC2115296  PMID: 3417777

Abstract

Two conformational states of the nicotinic acetylcholine receptor have been investigated by cryoelectron microscopy of flattened vesicular crystals grown from Torpedo marmorata postsynaptic membranes. One was obtained from the vesicles without acetylcholine present, and is presumed to correspond to the native, or resting state; the other was obtained from the vesicles after exposure to 100 microM to 5 mM carbamylcholine (an acetylcholine analogue) and is presumed to correspond to a desensitized state. Both conformations were determined in three-dimensions to a resolution of 18 A, sufficient to reveal the configurations of the five subunits around the central ion channel over most of their length. The subunits of either structure have a similar appearance, consistent with their amino acid homology. They are each aligned almost parallel to the axis of the receptor, conferring a high degree of pentagonal symmetry to the bilayer portion and a contiguous region on the synaptic side. Their external surfaces form a pronounced ridge in the bilayer portion, which broadens toward the synaptic end. Comparison of features in the two three-dimensional maps reveals that carbamylcholine induces a quaternary rearrangement, involving predominantly the delta-subunit. The densities corresponding to this subunit are tilted by approximately 10 degrees tangential to the axis of the receptor over a large fraction of its length, and become misaligned relative to the densities corresponding to the other four subunits. The gamma-subunit is also affected, being displaced slightly away from the axis of the receptor. The alpha- and beta-subunits may be affected on a more localized scale. The overall changes are most pronounced in the synaptic region, where the ligand-binding site is located, and in the cytoplasmic region, which may be closer to the gate of the channel. The physiological process of desensitization appears to be associated with a structural transition in which the subunits switch to a less symmetrical configuration.

Full Text

The Full Text of this article is available as a PDF (5.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agard D. A. A least-squares method for determining structure factors in three-dimensional tilted-view reconstructions. J Mol Biol. 1983 Jul 15;167(4):849–852. doi: 10.1016/s0022-2836(83)80114-4. [DOI] [PubMed] [Google Scholar]
  2. Amos L. A., Henderson R., Unwin P. N. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol. 1982;39(3):183–231. doi: 10.1016/0079-6107(83)90017-2. [DOI] [PubMed] [Google Scholar]
  3. Barrantes F. J. Agonist-mediated changes of the acetylcholine receptor in its membrane environment. J Mol Biol. 1978 Sep 5;124(1):1–26. doi: 10.1016/0022-2836(78)90144-4. [DOI] [PubMed] [Google Scholar]
  4. Bridgman P. C., Carr C., Pedersen S. E., Cohen J. B. Visualization of the cytoplasmic surface of Torpedo postsynaptic membranes by freeze-etch and immunoelectron microscopy. J Cell Biol. 1987 Oct;105(4):1829–1846. doi: 10.1083/jcb.105.4.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brisson A., Unwin P. N. Quaternary structure of the acetylcholine receptor. Nature. 1985 Jun 6;315(6019):474–477. doi: 10.1038/315474a0. [DOI] [PubMed] [Google Scholar]
  6. Brisson A., Unwin P. N. Tubular crystals of acetylcholine receptor. J Cell Biol. 1984 Oct;99(4 Pt 1):1202–1211. doi: 10.1083/jcb.99.4.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carp J. S., Aronstam R. S., Witkop B., Albuquerque E. X. Electrophysiological and biochemical studies on enhancement of desensitization by phenothiazine neuroleptics. Proc Natl Acad Sci U S A. 1983 Jan;80(1):310–314. doi: 10.1073/pnas.80.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Changeux J. P., Devillers-Thiéry A., Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984 Sep 21;225(4668):1335–1345. doi: 10.1126/science.6382611. [DOI] [PubMed] [Google Scholar]
  9. Crowther R. A., Amos L. A. Harmonic analysis of electron microscope images with rotational symmetry. J Mol Biol. 1971 Aug 28;60(1):123–130. doi: 10.1016/0022-2836(71)90452-9. [DOI] [PubMed] [Google Scholar]
  10. Grünhagen H. H., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. V. Qualitative correlation between pharmacological effects and equilibration processes of the cholinergic receptor protein as revealed by the structural probe quinacrine. J Mol Biol. 1976 Sep 25;106(3):517–535. doi: 10.1016/0022-2836(76)90250-3. [DOI] [PubMed] [Google Scholar]
  11. Hamilton S. L., Pratt D. R., Eaton D. C. Arrangement of the subunits of the nicotinic acetylcholine receptor of Torpedo californica as determined by alpha-neurotoxin cross-linking. Biochemistry. 1985 Apr 23;24(9):2210–2219. doi: 10.1021/bi00330a015. [DOI] [PubMed] [Google Scholar]
  12. Heidmann T., Changeux J. P. Characterization of the transient agonist-triggered state of the acetylcholine receptor rapidly labeled by the noncompetitive blocker [3H]chlorpromazine: additional evidence for the open channel conformation. Biochemistry. 1986 Oct 7;25(20):6109–6113. doi: 10.1021/bi00368a041. [DOI] [PubMed] [Google Scholar]
  13. Heidmann T., Changeux J. P. Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1897–1901. doi: 10.1073/pnas.81.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  15. Hess G. P., Udgaonkar J. B., Olbricht W. L. Chemical kinetic measurements of transmembrane processes using rapid reaction techniques: acetylcholine receptor. Annu Rev Biophys Biophys Chem. 1987;16:507–534. doi: 10.1146/annurev.bb.16.060187.002451. [DOI] [PubMed] [Google Scholar]
  16. Hucho F., Oberthür W., Lottspeich F. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett. 1986 Sep 1;205(1):137–142. doi: 10.1016/0014-5793(86)80881-x. [DOI] [PubMed] [Google Scholar]
  17. Huganir R. L., Delcour A. H., Greengard P., Hess G. P. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature. 1986 Jun 19;321(6072):774–776. doi: 10.1038/321774a0. [DOI] [PubMed] [Google Scholar]
  18. Imoto K., Methfessel C., Sakmann B., Mishina M., Mori Y., Konno T., Fukuda K., Kurasaki M., Bujo H., Fujita Y. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature. 1986 Dec 18;324(6098):670–674. doi: 10.1038/324670a0. [DOI] [PubMed] [Google Scholar]
  19. Kistler J., Stroud R. M., Klymkowsky M. W., Lalancette R. A., Fairclough R. H. Structure and function of an acetylcholine receptor. Biophys J. 1982 Jan;37(1):371–383. doi: 10.1016/S0006-3495(82)84685-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kubalek E., Ralston S., Lindstrom J., Unwin N. Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals from Torpedo marmorata. J Cell Biol. 1987 Jul;105(1):9–18. doi: 10.1083/jcb.105.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miles K., Anthony D. T., Rubin L. L., Greengard P., Huganir R. L. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6591–6595. doi: 10.1073/pnas.84.18.6591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neubig R. R., Cohen J. B. Equilibrium binding of [3H]tubocurarine and [3H]acetylcholine by Torpedo postsynaptic membranes: stoichiometry and ligand interactions. Biochemistry. 1979 Nov 27;18(24):5464–5475. doi: 10.1021/bi00591a032. [DOI] [PubMed] [Google Scholar]
  23. Popot J. L., Changeux J. P. Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev. 1984 Oct;64(4):1162–1239. doi: 10.1152/physrev.1984.64.4.1162. [DOI] [PubMed] [Google Scholar]
  24. Sakmann B., Methfessel C., Mishina M., Takahashi T., Takai T., Kurasaki M., Fukuda K., Numa S. Role of acetylcholine receptor subunits in gating of the channel. Nature. 1985 Dec 12;318(6046):538–543. doi: 10.1038/318538a0. [DOI] [PubMed] [Google Scholar]
  25. Sealock R. Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic-acid-mediated negative contrasting. J Cell Biol. 1982 Feb;92(2):514–522. doi: 10.1083/jcb.92.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spivak C. E., Albuquerque E. X. Triphenylmethylphosphonium blocks the nicotinic acetylcholine receptor noncompetitively. Mol Pharmacol. 1985 Feb;27(2):246–255. [PubMed] [Google Scholar]
  27. Unwin P. N., Ennis P. D. Two configurations of a channel-forming membrane protein. Nature. 1984 Feb 16;307(5952):609–613. doi: 10.1038/307609a0. [DOI] [PubMed] [Google Scholar]
  28. Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
  29. Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES