Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Sep 1;107(3):981–991. doi: 10.1083/jcb.107.3.981

Aldolase exists in both the fluid and solid phases of cytoplasm [published erratum appears in J Cell Biol 1988 Dec;107(6 Pt 1):following 2463]

PMCID: PMC2115307  PMID: 2458365

Abstract

We have prepared a functional fluorescent analogue of the glycolytic enzyme aldolase (rhodamine [Rh]-aldolase), using the succinimidyl ester of carboxytetramethyl-rhodamine. Fluorescence redistribution after photobleaching measurements of the diffusion coefficient of Rh-aldolase in aqueous solutions gave a value of 4.7 x 10(-7) cm2/S, and no immobile fraction. In the presence of filamentous actin, there was a 4.5-fold reduction in diffusion coefficient, as well as a 36% immobile fraction, demonstrating binding of Rh-aldolase to actin. However, in the presence of a 100-fold molar excess of its substrate, fructose 1,6- diphosphate, both the mobile fraction and diffusion coefficient of Rh- aldolase returned to control levels, indicating competition between substrate binding and actin cross-linking. When Rh-aldolase was microinjected into Swiss 3T3 cells, a relatively uniform intracellular distribution of fluorescence was observed. However, there were significant spatial differences in the in vivo diffusion coefficient and mobile fraction of Rh-aldolase measured with fluorescence redistribution after photobleaching. In the perinuclear region, we measured an apparent cytoplasmic diffusion coefficient of 1.1 x 10(-7) cm2/s with a 23% immobile fraction; while measurements in the cell periphery gave a value of 5.7 x 10(-8) cm2/s, with no immobile fraction. Ratio imaging of Rh-aldolase and FITC-dextran indicated that FITC-dextran was relatively excluded excluded from stress fiber domains. We interpret these data as evidence for the partitioning of aldolase between a soluble fraction in the fluid phase and a fraction associated with the solid phase of cytoplasm. The partitioning of aldolase and other glycolytic enzymes between the fluid and solid phases of cytoplasm could play a fundamental role in the control of glycolysis, the organization of cytoplasm, and cell motility. The concepts and experimental approaches described in this study can be applied to other cellular biochemical processes.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amato P. A., Taylor D. L. Probing the mechanism of incorporation of fluorescently labeled actin into stress fibers. J Cell Biol. 1986 Mar;102(3):1074–1084. doi: 10.1083/jcb.102.3.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amato P. A., Unanue E. R., Taylor D. L. Distribution of actin in spreading macrophages: a comparative study on living and fixed cells. J Cell Biol. 1983 Mar;96(3):750–761. doi: 10.1083/jcb.96.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnold H., Henning R., Pette D. Quantitative comparison of the binding of various glycolytic enzymes to F-actin and the interaction of aldolase with G-actin. Eur J Biochem. 1971 Sep 13;22(1):121–126. doi: 10.1111/j.1432-1033.1971.tb01522.x. [DOI] [PubMed] [Google Scholar]
  5. Arnold H., Nolte J., Pette D. Quantitative and histochemical studies on the desorption and readsorption of aldolase in cross-striated muscle. J Histochem Cytochem. 1969 May;17(5):314–320. doi: 10.1177/17.5.314. [DOI] [PubMed] [Google Scholar]
  6. Arnold H., Pette D. Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur J Biochem. 1970 Aug;15(2):360–366. doi: 10.1111/j.1432-1033.1970.tb01016.x. [DOI] [PubMed] [Google Scholar]
  7. Arnold H., Pette D. Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem. 1968 Nov;6(2):163–171. doi: 10.1111/j.1432-1033.1968.tb00434.x. [DOI] [PubMed] [Google Scholar]
  8. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bright G. R., Fisher G. W., Rogowska J., Taylor D. L. Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol. 1987 Apr;104(4):1019–1033. doi: 10.1083/jcb.104.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clarke F. M., Masters C. J. Letter: Multi-enzyme aggregates: new evidence for an association of glycolytic components. Biochim Biophys Acta. 1973 Nov 15;327(1):223–226. doi: 10.1016/0005-2744(73)90121-6. [DOI] [PubMed] [Google Scholar]
  12. Clarke F. M., Masters C. J. On the association of glycolytic components in skeletal muscle extracts. Biochim Biophys Acta. 1974 Jul 17;358(1):193–207. doi: 10.1016/0005-2744(74)90270-8. [DOI] [PubMed] [Google Scholar]
  13. Clarke F. M., Masters C. J. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975 Jan 13;381(1):37–46. doi: 10.1016/0304-4165(75)90187-7. [DOI] [PubMed] [Google Scholar]
  14. Clarke F. M., Morton D. J. Aldolase binding to actin-containing filaments. Formation of paracrystals. Biochem J. 1976 Dec 1;159(3):797–798. doi: 10.1042/bj1590797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Clarke F. M., Morton D. J. Glycolytic enzyme binding in fetal brain--the role of actin. Biochem Biophys Res Commun. 1982 Nov 30;109(2):388–393. doi: 10.1016/0006-291x(82)91733-8. [DOI] [PubMed] [Google Scholar]
  16. Clarke F. M., Shaw F. D., Morton D. J. Effect of electrical stimulation post mortem of bovine muscle on the binding of glycolytic enzymes. Functional and structural implications. Biochem J. 1980 Jan 15;186(1):105–109. doi: 10.1042/bj1860105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Clarke F. M., Stephan P., Huxham G., Hamilton D., Morton D. J. Metabolic dependence of glycolytic enzyme binding in rat and sheep heart. Eur J Biochem. 1984 Feb 1;138(3):643–649. doi: 10.1111/j.1432-1033.1984.tb07963.x. [DOI] [PubMed] [Google Scholar]
  18. DeBiasio R., Bright G. R., Ernst L. A., Waggoner A. S., Taylor D. L. Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells. J Cell Biol. 1987 Oct;105(4):1613–1622. doi: 10.1083/jcb.105.4.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dölken G., Leisner E., Pette D. Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isozymes in cross-striated skeletal muscle and heart of the rabbit. Histochemistry. 1975;43(2):113–121. doi: 10.1007/BF00492440. [DOI] [PubMed] [Google Scholar]
  20. Ernster L., Schatz G. Mitochondria: a historical review. J Cell Biol. 1981 Dec;91(3 Pt 2):227s–255s. doi: 10.1083/jcb.91.3.227s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fowler V. M., Pollard H. B. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes. J Cell Biochem. 1982;18(3):295–311. doi: 10.1002/jcb.1982.240180305. [DOI] [PubMed] [Google Scholar]
  22. Fowler V., Taylor D. L. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980 May;85(2):361–376. doi: 10.1083/jcb.85.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Fulton A. B. How crowded is the cytoplasm? Cell. 1982 Sep;30(2):345–347. doi: 10.1016/0092-8674(82)90231-8. [DOI] [PubMed] [Google Scholar]
  24. Gilbert M., Fulton A. B. The specificity and stability of the triton-extracted cytoskeletal framework of gerbil fibroma cells. J Cell Sci. 1985 Feb;73:335–345. doi: 10.1242/jcs.73.1.335. [DOI] [PubMed] [Google Scholar]
  25. Heidner E. G., Weber B. H., Eisenberg D. Subunit structure of aldolase. Science. 1971 Feb 19;171(3972):677–679. doi: 10.1126/science.171.3972.677. [DOI] [PubMed] [Google Scholar]
  26. Humphreys L., Masters C. On the differential release of glycolytic enzymes from cellular structure. Biochem Int. 1986 Jul;13(1):71–77. [PubMed] [Google Scholar]
  27. Hübscher G., Mayer R. J., Hansen H. J. Glycolytic enzymes as a multi-enzyme system. J Bioenerg. 1971 May;2(2):115–118. doi: 10.1007/BF01648926. [DOI] [PubMed] [Google Scholar]
  28. Knull H. R. Extraction of glycolytic enzymes: myo-inositol as a marker of membrane porosity. J Neurochem. 1985 Nov;45(5):1433–1440. doi: 10.1111/j.1471-4159.1985.tb07210.x. [DOI] [PubMed] [Google Scholar]
  29. Kreis T. E., Geiger B., Schlessinger J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell. 1982 Jul;29(3):835–845. doi: 10.1016/0092-8674(82)90445-7. [DOI] [PubMed] [Google Scholar]
  30. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Lai C. Y., Nakai N., Chang D. Amino acid sequence of rabbit muscle aldolase and the structure of the active center. Science. 1974 Mar;183(130):1204–1206. doi: 10.1126/science.183.4130.1204. [DOI] [PubMed] [Google Scholar]
  33. Lepock J. R., Cheng K. H., Campbell S. D., Kruuv J. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells. Biophys J. 1983 Dec;44(3):405–412. doi: 10.1016/S0006-3495(83)84314-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Luby-Phelps K., Castle P. E., Taylor D. L., Lanni F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4910–4913. doi: 10.1073/pnas.84.14.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Luby-Phelps K., Lanni F., Taylor D. L. Behavior of a fluorescent analogue of calmodulin in living 3T3 cells. J Cell Biol. 1985 Oct;101(4):1245–1256. doi: 10.1083/jcb.101.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Luby-Phelps K., Taylor D. L., Lanni F. Probing the structure of cytoplasm. J Cell Biol. 1986 Jun;102(6):2015–2022. doi: 10.1083/jcb.102.6.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. MacLean-Fletcher S. D., Pollard T. D. Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors. J Cell Biol. 1980 May;85(2):414–428. doi: 10.1083/jcb.85.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Masters C. J. Interactions between soluble enzymes and subcellular structure. CRC Crit Rev Biochem. 1981;11(2):105–143. doi: 10.3109/10409238109108700. [DOI] [PubMed] [Google Scholar]
  39. Masters C. J. Metabolic control and the microenvironment. Curr Top Cell Regul. 1977;12:75–105. doi: 10.1016/b978-0-12-152812-6.50009-3. [DOI] [PubMed] [Google Scholar]
  40. Masters C. J., Sheedy R. J., Winzor D. J., Nichol L. W. Reversible adsorption of enzymes as a possible allosteric control mechanism. Biochem J. 1969 May;112(5):806–808. doi: 10.1042/bj1120806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Masters C. J., Winzon D. J. The molecular size of enzymically active aldolase A. Biochem J. 1971 Feb;121(4):735–736. doi: 10.1042/bj1210735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Masters C. Interactions between glycolytic enzymes and components of the cytomatrix. J Cell Biol. 1984 Jul;99(1 Pt 2):222s–225s. doi: 10.1083/jcb.99.1.222s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mastro A. M., Babich M. A., Taylor W. D., Keith A. D. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3414–3418. doi: 10.1073/pnas.81.11.3414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Morton D. J., Clarke F. M., Masters C. J. An electron microscope study of the interaction between fructose diphosphate aldolase and actin-containing filaments. J Cell Biol. 1977 Sep;74(3):1016–1023. doi: 10.1083/jcb.74.3.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ottaway J. H., Mowbray J. The role of compartmentation in the control of glycolysis. Curr Top Cell Regul. 1977;12:107–208. doi: 10.1016/b978-0-12-152812-6.50010-x. [DOI] [PubMed] [Google Scholar]
  46. Penhoet E. E., Rutter W. J. Detection and isolation of mammalian fructose-diphosphate aldolases. Methods Enzymol. 1975;42:240–249. doi: 10.1016/0076-6879(75)42121-8. [DOI] [PubMed] [Google Scholar]
  47. Pollard T. D. Cytoplasmic contractile proteins. J Cell Biol. 1981 Dec;91(3 Pt 2):156s–165s. doi: 10.1083/jcb.91.3.156s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
  49. Schliwa M., Euteneuer U., Porter K. R. Release of enzymes of intermediary metabolism from permeabilized cells: further evidence in support of a structural organization of the cytoplasmic matrix. Eur J Cell Biol. 1987 Oct;44(2):214–218. [PubMed] [Google Scholar]
  50. Sigel P., Pette D. Intracellular localization of glycogenolytic and glycolytic enzymes in white and red rabbit skeletal muscle: a gel film method for coupled enzyme reactions in histochemistry. J Histochem Cytochem. 1969 Apr;17(4):225–237. doi: 10.1177/17.4.225. [DOI] [PubMed] [Google Scholar]
  51. Simon J. R., Taylor D. L. Preparation of a fluorescent analog: acetamidofluoresceinyl-labeled Dictyostelium discoideum alpha-actinin. Methods Enzymol. 1986;134:487–507. doi: 10.1016/0076-6879(86)34115-6. [DOI] [PubMed] [Google Scholar]
  52. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  53. Srere P. A. Enzyme concentrations in tissues. Science. 1967 Nov 17;158(3803):936–937. doi: 10.1126/science.158.3803.936. [DOI] [PubMed] [Google Scholar]
  54. Srivastava D. K., Bernhard S. A. Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Regul. 1986;28:1–68. doi: 10.1016/b978-0-12-152828-7.50003-2. [DOI] [PubMed] [Google Scholar]
  55. Srivastava D. K., Bernhard S. A. Metabolite transfer via enzyme-enzyme complexes. Science. 1986 Nov 28;234(4780):1081–1086. doi: 10.1126/science.3775377. [DOI] [PubMed] [Google Scholar]
  56. Standart N. M., Bray S. J., George E. L., Hunt T., Ruderman J. V. The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal RNAs in clam and sea urchin eggs. J Cell Biol. 1985 Jun;100(6):1968–1976. doi: 10.1083/jcb.100.6.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Stewart M., Morton D. J., Clarke F. M. Interaction of aldolase with actin-containing filaments. Structural studies. Biochem J. 1980 Jan 15;186(1):99–104. doi: 10.1042/bj1860099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tanasugarn L., McNeil P., Reynolds G. T., Taylor D. L. Microspectrofluorometry by digital image processing: measurement of cytoplasmic pH. J Cell Biol. 1984 Feb;98(2):717–724. doi: 10.1083/jcb.98.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Walsh T. P., Clarke F. M., Masters C. J. Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle. Biochem J. 1977 Jul 1;165(1):165–167. doi: 10.1042/bj1650165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Walsh T. P., Winzor D. J., Clarke F. M., Masters C. J., Morton D. J. Binding of aldolase to actin-containing filaments. Evidence of interaction with the regulatory proteins of skeletal muscle. Biochem J. 1980 Jan 15;186(1):89–98. doi: 10.1042/bj1860089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wang K., Feramisco J. R., Ash J. F. Fluorescent localization of contractile proteins in tissue culture cells. Methods Enzymol. 1982;85(Pt B):514–562. doi: 10.1016/0076-6879(82)85050-7. [DOI] [PubMed] [Google Scholar]
  62. Wang Y. L., Heiple J. M., Taylor D. L. Fluorescent analog cytochemistry of contractile proteins. Methods Cell Biol. 1982;25(Pt B):1–11. [PubMed] [Google Scholar]
  63. Wong P., Harper E. T. Selective arylation of cysteine-237 of rabbit muscle aldolase with 4-chloro-7-nitrobenzofurazan. Biochim Biophys Acta. 1982 Jan 4;700(1):33–41. doi: 10.1016/0167-4838(82)90288-6. [DOI] [PubMed] [Google Scholar]
  64. Yguerabide J., Schmidt J. A., Yguerabide E. E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J. 1982 Oct;40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. van Zoelen E. J., Tertoolen L. G., de Laat S. W. Simple computer method for evaluation of lateral diffusion coefficients from fluorescence photobleaching recovery kinetics. Biophys J. 1983 Apr;42(1):103–108. doi: 10.1016/S0006-3495(83)84374-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES