Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Sep 1;107(3):1225–1230. doi: 10.1083/jcb.107.3.1225

Synergism between membrane gangliosides and Arg-Gly-Asp-directed glycoprotein receptors in attachment to matrix proteins by melanoma cells

PMCID: PMC2115308  PMID: 2458363

Abstract

The identification of specific cell surface glycoprotein receptors for Arg-Gly-Asp-containing extracellular matrix proteins such as fibronectin has focused attention on the role of gangliosides in this process. Is their involvement dependent or independent of the protein receptors? In attachment assays with cells from a human melanoma cell line, titration experiments with an antibody (Mel 3) with specificity for the disialogangliosides GD2 and GD3, used together with a synthetic peptide containing the cell binding sequence Arg-Gly-Asp, show that their joint effect is synergistic. Both the Mel 3 antibody and the synthetic peptide individually cause rapid detachment of melanoma cells from fibronectin substrate but, when used together, much smaller concentrations of both are required to achieve the same effect. The Mel 3 antibody was not nonspecifically reducing receptor binding to the Arg- Gly-Asp sequence since, in binding assays with radiolabeled peptide performed with cells in suspension, very little peptide is bound by the melanoma cells under these conditions but addition of Mel 3, an antibody of IgM isotype, causes a two- to threefold increase in specific binding. The simplest interpretation of these data is that the Mel 3 antibody is causing sufficient clustering of membrane gangliosides in local areas and producing a favorably charged environment to facilitate peptide binding by specific glycoprotein receptors.

Full Text

The Full Text of this article is available as a PDF (740.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloj S. M., Lee G., Consiglio E., Formisano S., Minton A. P., Kohn L. D. Dansylated thyrotropin as a probe of hormone-receptor interactions. J Biol Chem. 1979 Sep 25;254(18):9030–9039. [PubMed] [Google Scholar]
  2. Besancon F., Ankel H. Binding of interferon to gangliosides. Nature. 1974 Dec 6;252(5483):478–480. doi: 10.1038/252478a0. [DOI] [PubMed] [Google Scholar]
  3. Bremer E. G., Hakomori S., Bowen-Pope D. F., Raines E., Ross R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem. 1984 Jun 10;259(11):6818–6825. [PubMed] [Google Scholar]
  4. Burns G. F., Cosgrove L., Triglia T., Beall J. A., López A. F., Werkmeister J. A., Begley C. G., Haddad A. P., d'Apice A. J., Vadas M. A. The IIb-IIIa glycoprotein complex that mediates platelet aggregation is directly implicated in leukocyte adhesion. Cell. 1986 Apr 25;45(2):269–280. doi: 10.1016/0092-8674(86)90391-0. [DOI] [PubMed] [Google Scholar]
  5. Burns G. F., Triglia T., Bartlett P. F., Mackay I. R. Human natural killer cells, activated lymphocyte killer cells, and monocytes possess similar cytotoxic mechanisms. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7606–7610. doi: 10.1073/pnas.80.24.7606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cavaillon J. M., Fitting C. Inhibition of lipopolysaccharide-induced monocyte interleukin 1 secretion by gangliosides. Eur J Immunol. 1986 Aug;16(8):1009–1012. doi: 10.1002/eji.1830160823. [DOI] [PubMed] [Google Scholar]
  7. Chan K. F. Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-inhibited protein kinase in brain. J Biol Chem. 1988 Jan 5;263(1):568–574. [PubMed] [Google Scholar]
  8. Cheresh D. A., Harper J. R., Schulz G., Reisfeld R. A. Localization of the gangliosides GD2 and GD3 in adhesion plaques and on the surface of human melanoma cells. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5767–5771. doi: 10.1073/pnas.81.18.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cheresh D. A., Klier F. G. Disialoganglioside GD2 distributes preferentially into substrate-associated microprocesses on human melanoma cells during their attachment to fibronectin. J Cell Biol. 1986 May;102(5):1887–1897. doi: 10.1083/jcb.102.5.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cheresh D. A., Pierschbacher M. D., Herzig M. A., Mujoo K. Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol. 1986 Mar;102(3):688–696. doi: 10.1083/jcb.102.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cheresh D. A., Pytela R., Pierschbacher M. D., Klier F. G., Ruoslahti E., Reisfeld R. A. An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in an divalent cation-dependent functional complex with the disialoganglioside GD2. J Cell Biol. 1987 Sep;105(3):1163–1173. doi: 10.1083/jcb.105.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chong A. S., Parish C. R. Nonimmune lymphocyte-macrophage interaction. I. Quantification by an automated colorimetric assay. Cell Immunol. 1985 May;92(2):265–276. doi: 10.1016/0008-8749(85)90008-5. [DOI] [PubMed] [Google Scholar]
  13. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  14. Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
  15. Fukuta S., Werkmeister J. A., Burns G. F., Ginsburg V., Magnani J. L. Monoclonal antibody Leo Mel 3, which inhibits killing of human melanoma cells by anomalous killer cells, binds to a sugar sequence in GD2 (II3(NeuAc)2-GgOse3Cer) and several other gangliosides. J Biol Chem. 1987 Apr 5;262(10):4800–4803. [PubMed] [Google Scholar]
  16. Hayman E. G., Pierschbacher M. D., Ruoslahti E. Detachment of cells from culture substrate by soluble fibronectin peptides. J Cell Biol. 1985 Jun;100(6):1948–1954. doi: 10.1083/jcb.100.6.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Houghton A. N., Mintzer D., Cordon-Cardo C., Welt S., Fliegel B., Vadhan S., Carswell E., Melamed M. R., Oettgen H. F., Old L. J. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1242–1246. doi: 10.1073/pnas.82.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Humphries M. J., Olden K., Yamada K. M. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science. 1986 Jul 25;233(4762):467–470. doi: 10.1126/science.3726541. [DOI] [PubMed] [Google Scholar]
  19. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  20. Irie R. F., Morton D. L. Regression of cutaneous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8694–8698. doi: 10.1073/pnas.83.22.8694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kinders R. J., Rintoul D. A., Johnson T. C. Ganglioside GM1 sensitizes tumor cells to growth inhibitory glycopeptides. Biochem Biophys Res Commun. 1982 Jul 30;107(2):663–669. doi: 10.1016/0006-291x(82)91542-x. [DOI] [PubMed] [Google Scholar]
  22. Kleinman H. K., Martin G. R., Fishman P. H. Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3367–3371. doi: 10.1073/pnas.76.7.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krissansen G. W., Owen M. J., Verbi W., Crumpton M. J. Primary structure of the T3 gamma subunit of the T3/T cell antigen receptor complex deduced from cDNA sequences: evolution of the T3 gamma and delta subunits. EMBO J. 1986 Aug;5(8):1799–1808. doi: 10.1002/j.1460-2075.1986.tb04429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McCarthy J. B., Hagen S. T., Furcht L. T. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol. 1986 Jan;102(1):179–188. doi: 10.1083/jcb.102.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Okada Y., Matsuura H., Hakomori S. Inhibition of tumor cell growth by aggregation of a tumor-associated glycolipid antigen: a close functional association between gangliotriaosylceramide and transferrin receptor in mouse lymphoma L-5178Y. Cancer Res. 1985 Jun;45(6):2793–2801. [PubMed] [Google Scholar]
  26. Perkins R. M., Kellie S., Patel B., Critchley D. R. Gangliosides as receptors for fibronectin? Comparison of cell spreading on a ganglioside-specific ligand with that on fibronectin. Exp Cell Res. 1982 Oct;141(2):231–243. doi: 10.1016/0014-4827(82)90211-7. [DOI] [PubMed] [Google Scholar]
  27. Petersen T. E., Thøgersen H. C., Skorstengaard K., Vibe-Pedersen K., Sahl P., Sottrup-Jensen L., Magnusson S. Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A. 1983 Jan;80(1):137–141. doi: 10.1073/pnas.80.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pierschbacher M. D., Hayman E. G., Ruoslahti E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981 Oct;26(2 Pt 2):259–267. doi: 10.1016/0092-8674(81)90308-1. [DOI] [PubMed] [Google Scholar]
  29. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  30. Pierschbacher M., Hayman E. G., Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1224–1227. doi: 10.1073/pnas.80.5.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pytela R., Pierschbacher M. D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770. doi: 10.1073/pnas.82.17.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  33. Riedl M., Forster O., Rumpold H., Bernheimer H. A ganglioside-dependent cellular binding mechanism in rat macrophages. J Immunol. 1982 Mar;128(3):1205–1210. [PubMed] [Google Scholar]
  34. Ruoslahti E., Hayman E. G., Pierschbacher M., Engvall E. Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 1982;82(Pt A):803–831. doi: 10.1016/0076-6879(82)82103-4. [DOI] [PubMed] [Google Scholar]
  35. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  36. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
  37. Schwarzbauer J. E., Tamkun J. W., Lemischka I. R., Hynes R. O. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell. 1983 Dec;35(2 Pt 1):421–431. doi: 10.1016/0092-8674(83)90175-7. [DOI] [PubMed] [Google Scholar]
  38. Spiegel S., Schlessinger J., Fishman P. H. Incorporation of fluorescent gangliosides into human fibroblasts: mobility, fate, and interaction with fibronectin. J Cell Biol. 1984 Aug;99(2):699–704. doi: 10.1083/jcb.99.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thorens B., Mermod J. J., Vassalli P. Phagocytosis and inflammatory stimuli induce GM-CSF mRNA in macrophages through posttranscriptional regulation. Cell. 1987 Feb 27;48(4):671–679. doi: 10.1016/0092-8674(87)90245-5. [DOI] [PubMed] [Google Scholar]
  40. Werkmeister J. A., Triglia T., Andrews P., Burns G. F. Identification of a structure on human melanoma cells recognized by CTL exhibiting anomalous killer cell function. J Immunol. 1985 Jul;135(1):689–695. [PubMed] [Google Scholar]
  41. Werkmeister J. A., Triglia T., Mackay I. R., Dowling J. P., Varigos G. A., Morstyn G., Burns G. F. Fluctuations in the expression of a glycolipid antigen associated with differentiation of melanoma cells monitored by a monoclonal antibody, Leo Mel 3. Cancer Res. 1987 Jan 1;47(1):225–230. [PubMed] [Google Scholar]
  42. Yamada K. M., Kennedy D. W. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol. 1984 Jul;99(1 Pt 1):29–36. doi: 10.1083/jcb.99.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yamada K. M., Kennedy D. W., Grotendorst G. R., Momoi T. Glycolipids: receptors for fibronectin? J Cell Physiol. 1981 Nov;109(2):343–351. doi: 10.1002/jcp.1041090218. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES