Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Oct;170(10):4865–4873. doi: 10.1128/jb.170.10.4865-4873.1988

Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains.

D Hohnadel 1, J M Meyer 1
PMCID: PMC211531  PMID: 3170485

Abstract

Pyoverdine-mediated iron transport was determined for seven fluorescent Pseudomonas strains belonging to different species. For all strains, cell or cell outer membrane and iron(III)-pyoverdine combinations were compared with their homologous counterparts in uptake, binding, and cross-feeding experiments. For four strains (Pseudomonas putida ATCC 12633, Pseudomonas fluorescens W, P. fluorescens ATCC 17400, and Pseudomonas tolaasii NCPPB 2192), the pyoverdine-mediated iron transport appeared to be strictly strain specific; pyoverdine-facilitated iron uptake by iron-starved cells and binding of ferripyoverdine to the purified outer membranes of such cells were efficient only in the case of the homologous systems. Cross-feeding assays, in liquid or solid cultures, resulted, however, especially for P. fluorescens ATCC 17400, in some discrepancies compared with uptake and binding assays, suggesting that growth experiments are the least likely to yield correct information on specificity of the pyoverdine-mediated iron transport. For the three other strains (P. fluorescens ATCC 13525, P. chlororaphis ATCC 9446, and P. aeruginosa ATCC 15692), cross-reactivity was demonstrated by the uptake, binding, and cross-feeding experiments. In an attempt to determine which parts of the iron transport system were responsible for the specificity, the differences in amino acid composition of the pyoverdines, together with the differences observed at the level of the iron-sensitive outer membrane protein pattern of the seven strains, are discussed.

Full text

PDF
4865

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buyer J. S., Leong J. Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J Biol Chem. 1986 Jan 15;261(2):791–794. [PubMed] [Google Scholar]
  2. Cody Y. S., Gross D. C. Characterization of Pyoverdin(pss), the Fluorescent Siderophore Produced by Pseudomonas syringae pv. syringae. Appl Environ Microbiol. 1987 May;53(5):928–934. doi: 10.1128/aem.53.5.928-934.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cody Y. S., Gross D. C. Outer membrane protein mediating iron uptake via pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae. J Bacteriol. 1987 May;169(5):2207–2214. doi: 10.1128/jb.169.5.2207-2214.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cornelis P., Moguilevsky N., Jacques J. F., Masson P. L. Study of the siderophores and receptors in different clinical isolates of Pseudomonas aeruginosa. Antibiot Chemother (1971) 1987;39:290–306. doi: 10.1159/000414354. [DOI] [PubMed] [Google Scholar]
  5. Cox C. D., Adams P. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun. 1985 Apr;48(1):130–138. doi: 10.1128/iai.48.1.130-138.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox C. D., Rinehart K. L., Jr, Moore M. L., Cook J. C., Jr Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4256–4260. doi: 10.1073/pnas.78.7.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ELLIOTT R. P. Some properties of pyoverdine, the water-soluble fluorescent pigment of the pseudomonads. Appl Microbiol. 1958 Jul;6(4):241–246. doi: 10.1128/am.6.4.241-246.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffiths G. L., Sigel S. P., Payne S. M., Neilands J. B. Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem. 1984 Jan 10;259(1):383–385. [PubMed] [Google Scholar]
  9. Griggs D. W., Tharp B. B., Konisky J. Cloning and promoter identification of the iron-regulated cir gene of Escherichia coli. J Bacteriol. 1987 Dec;169(12):5343–5352. doi: 10.1128/jb.169.12.5343-5352.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hancock R. E., Carey A. M. Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins. J Bacteriol. 1979 Dec;140(3):902–910. doi: 10.1128/jb.140.3.902-910.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hantke K. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol Gen Genet. 1983;191(2):301–306. doi: 10.1007/BF00334830. [DOI] [PubMed] [Google Scholar]
  12. Hartmann A., Fiedler H. P., Braun V. Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12. Eur J Biochem. 1979 Sep;99(3):517–524. doi: 10.1111/j.1432-1033.1979.tb13283.x. [DOI] [PubMed] [Google Scholar]
  13. LENHOFF H. AN INVERSE RELATIONSHIP OF THE EFFECTS OF OXYGEN AND IRON ON THE PRODUCTION OF FLUORESCEIN AND CYTOCHROME C BY PSEUDOMONAS FLUORESCENS. Nature. 1963 Aug 10;199:601–602. doi: 10.1038/199601a0. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Liu P. V., Shokrani F. Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa. Infect Immun. 1978 Dec;22(3):878–890. doi: 10.1128/iai.22.3.878-890.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Magazin M. D., Moores J. C., Leong J. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain. J Biol Chem. 1986 Jan 15;261(2):795–799. [PubMed] [Google Scholar]
  18. Maurer B., Müller A., Keller-Schierlein W., Zähner H. Stoffwechselprodukte von Mikroorganismen. 61. Ferribactin, ein Siderochrom aus Pseudomonas fluorescens Migula. Arch Mikrobiol. 1968;60(4):326–339. [PubMed] [Google Scholar]
  19. Mizuno T., Kageyama M. Separation and characterization of the outer membrane of Pseudomonas aeruginosa. J Biochem. 1978 Jul;84(1):179–191. doi: 10.1093/oxfordjournals.jbchem.a132106. [DOI] [PubMed] [Google Scholar]
  20. Neilands J. B. Microbial envelope proteins related to iron. Annu Rev Microbiol. 1982;36:285–309. doi: 10.1146/annurev.mi.36.100182.001441. [DOI] [PubMed] [Google Scholar]
  21. Neilands J. B. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–731. doi: 10.1146/annurev.bi.50.070181.003435. [DOI] [PubMed] [Google Scholar]
  22. Newkirk J. D., Hulcher F. H. Isolation and properties of a fluorescent pigent from Pseudomonas mildenbergii. Arch Biochem Biophys. 1969 Nov;134(2):395–400. doi: 10.1016/0003-9861(69)90298-7. [DOI] [PubMed] [Google Scholar]
  23. Ong S. A., Peterson T., Neilands J. B. Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem. 1979 Mar 25;254(6):1860–1865. [PubMed] [Google Scholar]
  24. Philson S. B., Llinás M. Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization. J Biol Chem. 1982 Jul 25;257(14):8081–8085. [PubMed] [Google Scholar]
  25. Philson S. B., Llinás M. Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy. J Biol Chem. 1982 Jul 25;257(14):8086–8090. [PubMed] [Google Scholar]
  26. Pierce J. R., Earhart C. F. Escherichia coli K-12 envelope proteins specifically required for ferrienterobactin uptake. J Bacteriol. 1986 Jun;166(3):930–936. doi: 10.1128/jb.166.3.930-936.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pugsley A. P., Schnaitman C. A. Factors affecting the electrophoretic mobility of the major outer membrane proteins of Escherichia coli in polyacrylamide gels. Biochim Biophys Acta. 1979 Nov 23;581(1):163–178. doi: 10.1016/0005-2795(79)90233-2. [DOI] [PubMed] [Google Scholar]
  28. Pugsley A. P., Zimmerman W., Wehrli W. Highly efficient uptake of a rifamycin derivative via the FhuA-TonB-dependent uptake route in Escherichia coli. J Gen Microbiol. 1987 Dec;133(12):3505–3511. doi: 10.1099/00221287-133-12-3505. [DOI] [PubMed] [Google Scholar]
  29. Sokol P. A., Woods D. E. Demonstration of an iron-siderophore-binding protein in the outer membrane of Pseudomonas aeruginosa. Infect Immun. 1983 May;40(2):665–669. doi: 10.1128/iai.40.2.665-669.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Teintze M., Hossain M. B., Barnes C. L., Leong J., van der Helm D. Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry. 1981 Oct 27;20(22):6446–6457. doi: 10.1021/bi00525a025. [DOI] [PubMed] [Google Scholar]
  31. Yang C. C., Leong J. Structure of pseudobactin 7SR1, a siderophore from a plant-deleterious Pseudomonas. Biochemistry. 1984 Jul 17;23(15):3534–3540. doi: 10.1021/bi00310a023. [DOI] [PubMed] [Google Scholar]
  32. de Weger L. A., van Boxtel R., van der Burg B., Gruters R. A., Geels F. P., Schippers B., Lugtenberg B. Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. J Bacteriol. 1986 Feb;165(2):585–594. doi: 10.1128/jb.165.2.585-594.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES