Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Nov 1;107(5):1729–1738. doi: 10.1083/jcb.107.5.1729

Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: evidence that glycoalbumin behaves as a bifunctional ligand

PMCID: PMC2115328  PMID: 3182935

Abstract

The binding and transport of glycoalbumin (gA) by the endothelium of murine myocardial microvessels were studied by perfusing in situ 125I- gA or gA-gold complexes (gA-Au) and examining the specimens by radioassays and EM, respectively. After a 3-min perfusion, the uptake of radioiodinated gA is 2.2-fold higher than that of native albumin; it is partially (approximately 55%) competed by either albumin or D- glucose, and almost completely abolished by the concomitant administration of both competitors or by gA. D-mannose and D-galactose are not effective competitors. Unlike albumin-gold complexes that bind restrictively to plasmalemmal vesicles, gA-Au labels the plasma-lemma proper, plasmalemmal vesicles open on the lumen, and most coated pits. Competing albumin prevents gA-Au binding to the membrane of plasmalemmal vesicles, while glucose significantly reduces the ligand binding to plasmalemma proper. Competition with albumin and glucose gives additive effects. Transcytosis of gA-Au, already detected at 3 min, becomes substantial by 30 min. No tracer exit via intercellular junctions was detected. gA-Au progressively accumulates in multivesicular bodies. The results of the binding and competition experiments indicate that the gA behaves as a bifunctional ligand which is recognized by two distinct binding sites: one, located on the plasma membrane, binds as a lectin the glucose residues of gA; whereas the other, confined to plasmalemmal vesicles, recognizes presumably specific domains of the albumin molecule.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baynes J. W., Thorpe S. R., Murtiashaw M. H. Nonenzymatic glucosylation of lysine residues in albumin. Methods Enzymol. 1984;106:88–98. doi: 10.1016/0076-6879(84)06010-9. [DOI] [PubMed] [Google Scholar]
  2. Bent-Hansen L., Feldt-Rasmussen B., Kverneland A., Deckert T. Transcapillary escape rate and relative metabolic clearance of glycated and non-glycated albumin in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987 Jan;30(1):2–4. doi: 10.1007/BF01788898. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brownlee M., Cerami A. The biochemistry of the complications of diabetes mellitus. Annu Rev Biochem. 1981;50:385–432. doi: 10.1146/annurev.bi.50.070181.002125. [DOI] [PubMed] [Google Scholar]
  5. Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation reduces the susceptibility of fibrin to degradation by plasmin. Diabetes. 1983 Jul;32(7):680–684. doi: 10.2337/diab.32.7.680. [DOI] [PubMed] [Google Scholar]
  6. Bundgaard M., Hagman P., Crone C. The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res. 1983 May;25(3):358–368. doi: 10.1016/0026-2862(83)90025-0. [DOI] [PubMed] [Google Scholar]
  7. Cohen M. P., Urdanivia E., Surma M., Wu V. Y. Increased glycosylation of glomerular basement membrane collagen in diabetes. Biochem Biophys Res Commun. 1980 Jul 31;95(2):765–769. doi: 10.1016/0006-291x(80)90852-9. [DOI] [PubMed] [Google Scholar]
  8. Day J. F., Thornburg R. W., Thorpe S. R., Baynes J. W. Nonenzymatic glucosylation of rat albumin. Studies in vitro and in vivo. J Biol Chem. 1979 Oct 10;254(19):9394–9400. [PubMed] [Google Scholar]
  9. Ellis E. N., Mauer S. M., Goetz F. C., Sutherland D. E., Steffes M. W. Relationship of muscle capillary basement membrane to renal structure and function in diabetes mellitus. Diabetes. 1986 Apr;35(4):421–425. doi: 10.2337/diab.35.4.421. [DOI] [PubMed] [Google Scholar]
  10. Fauchald P., Norseth J., Jervell J. Transcapillary colloid osmotic gradient, plasma volume and interstitial fluid volume in long-term type 1 (insulin-dependent) diabetes. Diabetologia. 1985 May;28(5):269–273. doi: 10.1007/BF00271683. [DOI] [PubMed] [Google Scholar]
  11. Feldt-Rasmussen B. Increased transcapillary escape rate of albumin in type 1 (insulin-dependent) diabetic patients with microalbuminuria. Diabetologia. 1986 May;29(5):282–286. doi: 10.1007/BF00452063. [DOI] [PubMed] [Google Scholar]
  12. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  13. Frøkjaer-Jensen J. Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res. 1980 Oct;73(1):9–20. doi: 10.1016/0022-5320(80)90111-2. [DOI] [PubMed] [Google Scholar]
  14. Garlick R. L., Mazer J. S., Higgins P. J., Bunn H. F. Characterization of glycosylated hemoglobins. Relevance to monitoring of diabetic control and analysis of other proteins. J Clin Invest. 1983 May;71(5):1062–1072. doi: 10.1172/JCI110856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garlick R. L., Mazer J. S. The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem. 1983 May 25;258(10):6142–6146. [PubMed] [Google Scholar]
  16. Ghiggeri G. M., Candiano G., Delfino G., Queirolo C. Electrical charge of serum and urinary albumin in normal and diabetic humans. Kidney Int. 1985 Aug;28(2):168–177. doi: 10.1038/ki.1985.137. [DOI] [PubMed] [Google Scholar]
  17. Ghitescu L., Fixman A., Simionescu M., Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol. 1986 Apr;102(4):1304–1311. doi: 10.1083/jcb.102.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gonen B., Baenziger J., Schonfeld G., Jacobson D., Farrar P. Nonenzymatic glycosylation of low density lipoproteins in vitro. Effects on cell-interactive properties. Diabetes. 1981 Oct;30(10):875–878. doi: 10.2337/diab.30.10.875. [DOI] [PubMed] [Google Scholar]
  19. John W. G., Jones A. E. Affinity chromatography: a precise method for glycosylated albumin estimation. Ann Clin Biochem. 1985 Jan;22(Pt 1):79–83. doi: 10.1177/000456328502200108. [DOI] [PubMed] [Google Scholar]
  20. Karp W. B., Kinsley M., Subramanyam S. B., Robertson A. F. Binding properties of glycosylated albumin and acetaldehyde albumin. Alcohol Clin Exp Res. 1985 Sep-Oct;9(5):429–432. doi: 10.1111/j.1530-0277.1985.tb05577.x. [DOI] [PubMed] [Google Scholar]
  21. Kennedy L., Baynes J. W. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia. 1984 Feb;26(2):93–98. doi: 10.1007/BF00281113. [DOI] [PubMed] [Google Scholar]
  22. Kverneland A., Feldt-Rasmussen B., Vidal P., Welinder B., Bent-Hansen L., Søegaard U., Deckert T. Evidence of changes in renal charge selectivity in patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1986 Sep;29(9):634–639. doi: 10.1007/BF00869262. [DOI] [PubMed] [Google Scholar]
  23. McMillan D. E. The microcirculation in diabetes. Microcirc Endothelium Lymphatics. 1984 Feb;1(1):3–24. [PubMed] [Google Scholar]
  24. Milici A. J., Watrous N. E., Stukenbrok H., Palade G. E. Transcytosis of albumin in capillary endothelium. J Cell Biol. 1987 Dec;105(6 Pt 1):2603–2612. doi: 10.1083/jcb.105.6.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller J. A., Gravallese E., Bunn H. F. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J Clin Invest. 1980 Apr;65(4):896–901. doi: 10.1172/JCI109743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Monnier V. M., Stevens V. J., Cerami A. Nonenzymatic glycosylation, sulfhydryl oxidation, and aggregation of lens proteins in experimental sugar cataracts. J Exp Med. 1979 Nov 1;150(5):1098–1107. doi: 10.1084/jem.150.5.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murtiashaw M. H., Winterhalter K. H. Non-enzymatic glycation of human albumin does not alter its palmitate binding. Diabetologia. 1986 Jun;29(6):366–370. doi: 10.1007/BF00903346. [DOI] [PubMed] [Google Scholar]
  28. Nakayama H., Makita Z., Kato M., Taneda S., Yoshida H., Yanagisawa K., Nakagawa S. Quantitative enzyme-linked immunosorbent assay (ELISA) for non-enzymatically glycated serum protein. J Immunol Methods. 1987 May 4;99(1):95–100. doi: 10.1016/0022-1759(87)90036-6. [DOI] [PubMed] [Google Scholar]
  29. Parving H. H. Increased microvascular permeability to plasma proteins in short- and long-term juvenile diabetics. Diabetes. 1976;25(2 Suppl):884–889. [PubMed] [Google Scholar]
  30. Rendell M., Nierenberg J., Brannan C., Valentine J. L., Stephen P. M., Dodds S., Mercer P., Smith P. K., Walder J. Inhibition of glycation of albumin and hemoglobin by acetylation in vitro and in vivo. J Lab Clin Med. 1986 Oct;108(4):286–293. [PubMed] [Google Scholar]
  31. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  32. Schnider S. L., Kohn R. R. Glucosylation of human collagen in aging and diabetes mellitus. J Clin Invest. 1980 Nov;66(5):1179–1181. doi: 10.1172/JCI109950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shaklai N., Garlick R. L., Bunn H. F. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem. 1984 Mar 25;259(6):3812–3817. [PubMed] [Google Scholar]
  34. Simionescu N., Simionescu M., Palade G. E. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol. 1972 May;53(2):365–392. doi: 10.1083/jcb.53.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981 Aug;90(2):533–536. doi: 10.1083/jcb.90.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tarsio J. F., Reger L. A., Furcht L. T. Decreased interaction of fibronectin, type IV collagen, and heparin due to nonenzymatic glycation. Implications for diabetes mellitus. Biochemistry. 1987 Feb 24;26(4):1014–1020. doi: 10.1021/bi00378a006. [DOI] [PubMed] [Google Scholar]
  37. Tarsio J. F., Wigness B., Rhode T. D., Rupp W. M., Buchwald H., Furcht L. T. Nonenzymatic glycation of fibronectin and alterations in the molecular association of cell matrix and basement membrane components in diabetes mellitus. Diabetes. 1985 May;34(5):477–484. doi: 10.2337/diab.34.5.477. [DOI] [PubMed] [Google Scholar]
  38. Viberti G., Mackintosh D., Keen H. Determinants of the penetration of proteins through the glomerular barrier in insulin-dependent diabetes mellitus. Diabetes. 1983 May;32 (Suppl 2):92–95. doi: 10.2337/diab.32.2.s92. [DOI] [PubMed] [Google Scholar]
  39. Villaschi S., Johns L., Cirigliano M., Pietra G. G. Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs. Microvasc Res. 1986 Sep;32(2):190–199. doi: 10.1016/0026-2862(86)90053-1. [DOI] [PubMed] [Google Scholar]
  40. Vlassara H., Brownlee M., Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5190–5192. doi: 10.1073/pnas.78.8.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vlassara H., Valinsky J., Brownlee M., Cerami C., Nishimoto S., Cerami A. Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turnover of aging cells. J Exp Med. 1987 Aug 1;166(2):539–549. doi: 10.1084/jem.166.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wagner R. C., Williams S. K., Matthews M. A., Andrews S. B. Exclusion of albumin from vesicular ingestion by isolated microvessels. Microvasc Res. 1980 Jan;19(1):127–130. doi: 10.1016/0026-2862(80)90088-6. [DOI] [PubMed] [Google Scholar]
  43. Wallow I. H., Engerman R. L. Permeability and patency of retinal blood vessels in experimental diabetes. Invest Ophthalmol Vis Sci. 1977 May;16(5):447–461. [PubMed] [Google Scholar]
  44. Williams S. K., Devenny J. J., Bitensky M. W. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2393–2397. doi: 10.1073/pnas.78.4.2393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Williams S. K., Solenski N. J. Enhanced vesicular ingestion of nonenzymatically glucosylated proteins by capillary endothelium. Microvasc Res. 1984 Nov;28(3):311–321. doi: 10.1016/0026-2862(84)90003-7. [DOI] [PubMed] [Google Scholar]
  46. Williams S. K. Vesicular transport of proteins by capillary endothelium. Ann N Y Acad Sci. 1983;416:457–467. doi: 10.1111/j.1749-6632.1983.tb35205.x. [DOI] [PubMed] [Google Scholar]
  47. Williamson J. R., Kilo C. Basement-membrane thickening and diabetic microangiopathy. Diabetes. 1976;25(2 Suppl):925–927. [PubMed] [Google Scholar]
  48. Witztum J. L., Mahoney E. M., Branks M. J., Fisher M., Elam R., Steinberg D. Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity. Diabetes. 1982 Apr;31(4 Pt 1):283–291. doi: 10.2337/diab.31.4.283. [DOI] [PubMed] [Google Scholar]
  49. Yatscoff R. W., Mehta A., Gerrard J. M., Thliveris J. Glycation of platelet protein in diabetes mellitus: lack of correlation with platelet function. Clin Biochem. 1987 Oct;20(5):359–363. doi: 10.1016/s0009-9120(87)80087-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES