Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Nov 1;107(5):1767–1776. doi: 10.1083/jcb.107.5.1767

Sertoli cell processes have axoplasmic features: an ordered microtubule distribution and an abundant high molecular weight microtubule- associated protein (cytoplasmic dynein)

PMCID: PMC2115329  PMID: 2972729

Abstract

Microtubules in the cytoplasm of rat Sertoli cell stage VI-VIII testicular seminiferous epithelium were studied morphometrically by electron microscopy. The Sertoli cell microtubules demonstrated axonal features, being largely parallel in orientation and predominantly spaced one to two microtubule diameters apart, suggesting the presence of microtubule-bound spacer molecules. Testis microtubule-associated proteins (MAPs) were isolated by a taxol, salt elution procedure. Testis MAPs promoted microtubule assembly, but to a lesser degree than brain MAPs. High molecular weight MAPs, similar in electrophoretic mobilities to brain MAP-1 and MAP-2, were prominent components of total testis MAPs, though no shared immunoreactivity was detected between testis and brain high molecular weight MAPs using both polyclonal and monoclonal antibodies. Unlike brain high molecular weight MAPs, testis high molecular weight MAPs were not heat stable. Testis MAP composition, studied on postnatal days 5, 10, 15, and 24 and in the adult, changed dramatically during ontogeny. However, the expression of the major testis high molecular weight MAP, called HMW-2, was constitutive and independent of the development of mature germ cells. The Sertoli cell origin of HMW-2 was confirmed by identifying this protein as the major MAP found in an enriched Sertoli cell preparation and in two rat models of testicular injury characterized by germ cell depletion. HMW-2 was selectively released from testis microtubules by ATP and co-purified by sucrose density gradient centrifugation with MAP- 1C, a neuronal cytoplasmic dynein. The inhibition of the microtubule- activated ATPase activity of HMW-2 by vanadate and erythro-(2-hydroxy-3- nonyl)adenine and its proteolytic breakdown by vanadate-dependent UV photocleavage confirmed the dynein-like nature of HMW-2. As demonstrated by this study, the neuronal and Sertoli cell cytoskeletons share morphological, structural and functional properties.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amlani S., Vogl A. W. Changes in the distribution of microtubules and intermediate filaments in mammalian Sertoli cells during spermatogenesis. Anat Rec. 1988 Feb;220(2):143–160. doi: 10.1002/ar.1092200206. [DOI] [PubMed] [Google Scholar]
  2. Bloom G. S., Schoenfeld T. A., Vallee R. B. Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system. J Cell Biol. 1984 Jan;98(1):320–330. doi: 10.1083/jcb.98.1.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boekelheide K. 2,5-Hexanedione alters microtubule assembly. II. Enhanced polymerization of crosslinked tubulin. Toxicol Appl Pharmacol. 1987 May;88(3):383–396. doi: 10.1016/0041-008x(87)90213-4. [DOI] [PubMed] [Google Scholar]
  4. Boekelheide K. Rat testis during 2,5-hexanedione intoxication and recovery. I. Dose response and the reversibility of germ cell loss. Toxicol Appl Pharmacol. 1988 Jan;92(1):18–27. doi: 10.1016/0041-008x(88)90223-2. [DOI] [PubMed] [Google Scholar]
  5. Boekelheide K. Rat testis during 2,5-hexanedione intoxication and recovery. II. Dynamics of pyrrole reactivity, tubulin content, and microtubule assembly. Toxicol Appl Pharmacol. 1988 Jan;92(1):28–33. doi: 10.1016/0041-008x(88)90224-4. [DOI] [PubMed] [Google Scholar]
  6. Brady S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature. 1985 Sep 5;317(6032):73–75. doi: 10.1038/317073a0. [DOI] [PubMed] [Google Scholar]
  7. CLERMONT Y., MORGENTALER H. Quantitative study of spermatogenesis in the hypophysectomized rat. Endocrinology. 1955 Sep;57(3):369–382. doi: 10.1210/endo-57-3-369. [DOI] [PubMed] [Google Scholar]
  8. CLERMONT Y., PEREY B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am J Anat. 1957 Mar;100(2):241–267. doi: 10.1002/aja.1001000205. [DOI] [PubMed] [Google Scholar]
  9. Chapin R. E., Morgan K. T., Bus J. S. The morphogenesis of testicular degeneration induced in rats by orally administered 2,5-hexanedione. Exp Mol Pathol. 1983 Apr;38(2):149–169. doi: 10.1016/0014-4800(83)90082-5. [DOI] [PubMed] [Google Scholar]
  10. Chapin R. E., Phelps J. L., Miller B. E., Gray T. J. Alkaline phosphatase histochemistry discriminates peritubular cells in primary rat testicular cell culture. J Androl. 1987 May-Jun;8(3):155–161. doi: 10.1002/j.1939-4640.1987.tb02427.x. [DOI] [PubMed] [Google Scholar]
  11. Djakiew D., Hadley M. A., Byers S. W., Dym M. Transferrin-mediated transcellular transport of 59Fe across confluent epithelial sheets of Sertoli cells grown in bicameral cell culture chambers. J Androl. 1986 Nov-Dec;7(6):355–366. doi: 10.1002/j.1939-4640.1986.tb00945.x. [DOI] [PubMed] [Google Scholar]
  12. Euteneuer U., Koonce M. P., Pfister K. K., Schliwa M. An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa. Nature. 1988 Mar 10;332(6160):176–178. doi: 10.1038/332176a0. [DOI] [PubMed] [Google Scholar]
  13. Forman D. S., Brown K. J., Promersberger M. E. Selective inhibition of retrograde axonal transport by erythro-9-[3-(2-hydroxynonyl)]adenine. Brain Res. 1983 Aug 1;272(1):194–197. doi: 10.1016/0006-8993(83)90381-5. [DOI] [PubMed] [Google Scholar]
  14. Genter M. B., Szakál-Quin G., Anderson C. W., Anthony D. C., Graham D. G. Evidence that pyrrole formation is a pathogenetic step in gamma-diketone neuropathy. Toxicol Appl Pharmacol. 1987 Feb;87(2):351–362. doi: 10.1016/0041-008x(87)90296-1. [DOI] [PubMed] [Google Scholar]
  15. Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gibson W. Protease-facilitated transfer of high-molecular-weight proteins during electrotransfer to nitrocellulose. Anal Biochem. 1981 Nov 15;118(1):1–3. doi: 10.1016/0003-2697(81)90147-0. [DOI] [PubMed] [Google Scholar]
  17. Gottfried M. R., Graham D. G., Morgan M., Casey H. W., Bus J. S. The morphology of carbon disulfide neurotoxicity. Neurotoxicology. 1985 Winter;6(4):89–96. [PubMed] [Google Scholar]
  18. Hirokawa N., Bloom G. S., Vallee R. B. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system. J Cell Biol. 1985 Jul;101(1):227–239. doi: 10.1083/jcb.101.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Izant J. G., McIntosh J. R. Microtubule-associated proteins: a monoclonal antibody to MAP2 binds to differentiated neurons. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4741–4745. doi: 10.1073/pnas.77.8.4741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. King S. M., Witman G. B. Structure of the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Masses of chains and sites of ultraviolet-induced vanadate-dependent cleavage. J Biol Chem. 1987 Dec 25;262(36):17596–17604. [PubMed] [Google Scholar]
  22. Kosik K. S., Duffy L. K., Dowling M. M., Abraham C., McCluskey A., Selkoe D. J. Microtubule-associated protein 2: monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7941–7945. doi: 10.1073/pnas.81.24.7941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LEBLOND C. P., CLERMONT Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952 Nov 20;55(4):548–573. doi: 10.1111/j.1749-6632.1952.tb26576.x. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lewis S. A., Sherline P., Cowan N. J. A cloned cDNA encoding MAP1 detects a single copy gene in mouse and a brain-abundant RNA whose level decreases during development. J Cell Biol. 1986 Jun;102(6):2106–2114. doi: 10.1083/jcb.102.6.2106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lewis S. A., Villasante A., Sherline P., Cowan N. J. Brain-specific expression of MAP2 detected using a cloned cDNA probe. J Cell Biol. 1986 Jun;102(6):2098–2105. doi: 10.1083/jcb.102.6.2098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lye R. J., Porter M. E., Scholey J. M., McIntosh J. R. Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans. Cell. 1987 Oct 23;51(2):309–318. doi: 10.1016/0092-8674(87)90157-7. [DOI] [PubMed] [Google Scholar]
  29. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  30. Miller M. S., Spencer P. S. The mechanisms of acrylamide axonopathy. Annu Rev Pharmacol Toxicol. 1985;25:643–666. doi: 10.1146/annurev.pa.25.040185.003235. [DOI] [PubMed] [Google Scholar]
  31. Morales C., Clermont Y. Receptor-mediated endocytosis of transferrin by Sertoli cells of the rat. Biol Reprod. 1986 Sep;35(2):393–405. doi: 10.1095/biolreprod35.2.393. [DOI] [PubMed] [Google Scholar]
  32. Morton D. B. Lysosomal enzymes in mammalian spermatozoa. Front Biol. 1976;45:203–255. [PubMed] [Google Scholar]
  33. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Olmsted J. B. Microtubule-associated proteins. Annu Rev Cell Biol. 1986;2:421–457. doi: 10.1146/annurev.cb.02.110186.002225. [DOI] [PubMed] [Google Scholar]
  35. Papasozomenos S. C., Autilio-Gambetti L., Gambetti P. Reorganization of axoplasmic organelles following beta, beta'-iminodipropionitrile administration. J Cell Biol. 1981 Dec;91(3 Pt 1):866–871. doi: 10.1083/jcb.91.3.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parysek L. M., Asnes C. F., Olmsted J. B. MAP 4: occurrence in mouse tissues. J Cell Biol. 1984 Oct;99(4 Pt 1):1309–1315. doi: 10.1083/jcb.99.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Parysek L. M., Wolosewick J. J., Olmsted J. B. MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules. J Cell Biol. 1984 Dec;99(6):2287–2296. doi: 10.1083/jcb.99.6.2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Paschal B. M., Shpetner H. S., Vallee R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol. 1987 Sep;105(3):1273–1282. doi: 10.1083/jcb.105.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Paschal B. M., Vallee R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. doi: 10.1038/330181a0. [DOI] [PubMed] [Google Scholar]
  40. Penningroth S. M., Cheung A., Bouchard P., Gagnon C., Bardin C. W. Dynein ATPase is inhibited selectively in vitro by erythro-9-[3-2-(hydroxynonyl)]adenine. Biochem Biophys Res Commun. 1982 Jan 15;104(1):234–240. doi: 10.1016/0006-291x(82)91964-7. [DOI] [PubMed] [Google Scholar]
  41. Reichert B. L., Abou-Donia M. B. Inhibition of fast axoplasmic transport by delayed neurotoxic organophosphorus esters: a possible mode of action. Mol Pharmacol. 1980 Jan;17(1):56–60. [PubMed] [Google Scholar]
  42. Russell L. D., Tallon-Doran M., Weber J. E., Wong V., Peterson R. N. Three-dimensional reconstruction of a rat stage V Sertoli cell: III. A study of specific cellular relationships. Am J Anat. 1983 Jun;167(2):181–192. doi: 10.1002/aja.1001670204. [DOI] [PubMed] [Google Scholar]
  43. Russell L. Observations on rat Sertoli ectoplasmic ('junctional') specializations in their association with germ cells of the rat testis. Tissue Cell. 1977;9(3):475–498. doi: 10.1016/0040-8166(77)90007-6. [DOI] [PubMed] [Google Scholar]
  44. Seifert J., Casida J. E. Possible role of microtubules and associated proteases in organophosphorus ester-induced delayed neurotoxicity. Biochem Pharmacol. 1982 Jun 1;31(11):2065–2070. doi: 10.1016/0006-2952(82)90422-1. [DOI] [PubMed] [Google Scholar]
  45. Sloboda R. D., Dentler W. L., Rosenbaum J. L. Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry. 1976 Oct 5;15(20):4497–4505. doi: 10.1021/bi00665a026. [DOI] [PubMed] [Google Scholar]
  46. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Valdivia M. M., Avila J., Coll J., Colaço C., Sandoval I. V. Quantitation and characterization of the microtubule associated MAP2 in porcine tissues and its isolation from porcine (PK15) and human (HeLa) cell lines. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1241–1249. doi: 10.1016/0006-291x(82)90920-2. [DOI] [PubMed] [Google Scholar]
  48. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vallee R. B. On the use of heat stability as a criterion for the identification of microtubule associated proteins (MAPs). Biochem Biophys Res Commun. 1985 Nov 27;133(1):128–133. doi: 10.1016/0006-291x(85)91850-9. [DOI] [PubMed] [Google Scholar]
  50. Vogl A. W., Lin Y. C., Dym M., Fawcett D. W. Sertoli cells of the golden-mantled ground squirrel (Spermophilus lateralis): a model system for the study of shape change. Am J Anat. 1983 Sep;168(1):83–98. doi: 10.1002/aja.1001680109. [DOI] [PubMed] [Google Scholar]
  51. Vogl A. W., Linck R. W., Dym M. Colchicine-induced changes in the cytoskeleton of the golden-mantled ground squirrel (Spermophilus lateralis) Sertoli cells. Am J Anat. 1983 Sep;168(1):99–108. doi: 10.1002/aja.1001680110. [DOI] [PubMed] [Google Scholar]
  52. Weber J. E., Russell L. D., Wong V., Peterson R. N. Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli--Sertoli and Sertoli--germ-cell relationships. Am J Anat. 1983 Jun;167(2):163–179. doi: 10.1002/aja.1001670203. [DOI] [PubMed] [Google Scholar]
  53. Wiche G., Briones E., Koszka C., Artlieb U., Krepler R. Widespread occurrence of polypeptides related to neurotubule-associated proteins (MAP-1 and MAP-2) in non-neuronal cells and tissues. EMBO J. 1984 May;3(5):991–998. doi: 10.1002/j.1460-2075.1984.tb01918.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wong V., Russell L. D. Three-dimensional reconstruction of a rat stage V Sertoli cell: I. Methods, basic configuration, and dimensions. Am J Anat. 1983 Jun;167(2):143–161. doi: 10.1002/aja.1001670202. [DOI] [PubMed] [Google Scholar]
  55. Wuerker R. B., Kirkpatrick J. B. Neuronal microtubules, neurofilaments, and microfilaments. Int Rev Cytol. 1972;33:45–75. doi: 10.1016/s0074-7696(08)61448-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES