Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Nov 1;107(5):1987–1993. doi: 10.1083/jcb.107.5.1987

Identification of a tumor cell receptor for VGVAPG, an elastin-derived chemotactic peptide

PMCID: PMC2115331  PMID: 2846590

Abstract

Extracellular matrix proteins and their proteolytic products have been shown to modulate cell motility. We have found that certain tumor cells display a chemotactic response to degradation products of the matrix protein elastin, and to an elastin-derived peptide, VGVAPG. The hexapeptide VGVAPG is a particularly potent chemotaxin for lung- colonizing Lewis lung carcinoma cells (line M27), with 5 nM VGVAPG eliciting maximal chemotactic response when assayed in 48-microwell chemotaxis chambers. Binding of the elastin-derived peptide to M27 cells was studied using a tyrosinated analog (Y-VGVAPG) to allow iodination. Scatchard analysis of [125I]Y-VGVAPG binding to viable M27 tumor cells at both 37 and 4 degrees C indicates the presence of a single class of high affinity binding sites. The dissociation constant obtained from these studies (2.7 X 10(-9) M) is equivalent to the concentration of VGVAPG required for chemotactic activity. The receptor molecule was identified as an Mr 59,000 species by covalent cross- linking of the radiolabeled ligand to the M27 tumor cell surface and subsequent analysis of the cross-linked material by electrophoresis and size-exclusion high performance liquid chromatography. These results suggest that M27 tumor cell chemotaxis to VGVAPG is initiated by high affinity binding of the peptide to a distinct cell surface receptor.

Full Text

The Full Text of this article is available as a PDF (856.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albini A., Allavena G., Melchiori A., Giancotti F., Richter H., Comoglio P. M., Parodi S., Martin G. R., Tarone G. Chemotaxis of 3T3 and SV3T3 cells to fibronectin is mediated through the cell-attachment site in fibronectin and a fibronectin cell surface receptor. J Cell Biol. 1987 Oct;105(4):1867–1872. doi: 10.1083/jcb.105.4.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brodt P. Characterization of two highly metastatic variants of Lewis lung carcinoma with different organ specificities. Cancer Res. 1986 May;46(5):2442–2448. [PubMed] [Google Scholar]
  4. Catt K. J., Harwood J. P., Aguilera G., Dufau M. L. Hormonal regulation of peptide receptors and target cell responses. Nature. 1979 Jul 12;280(5718):109–116. doi: 10.1038/280109a0. [DOI] [PubMed] [Google Scholar]
  5. Friesel R., Burgess W. H., Mehlman T., Maciag T. The characterization of the receptor for endothelial cell growth factor by covalent ligand attachment. J Biol Chem. 1986 Jun 15;261(17):7581–7584. [PubMed] [Google Scholar]
  6. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hinek A., Wrenn D. S., Mecham R. P., Barondes S. H. The elastin receptor: a galactoside-binding protein. Science. 1988 Mar 25;239(4847):1539–1541. doi: 10.1126/science.2832941. [DOI] [PubMed] [Google Scholar]
  8. Hornebeck W., Tixier J. M., Robert L. Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5517–5520. doi: 10.1073/pnas.83.15.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacob M. P., Fülöp T., Jr, Foris G., Robert L. Effect of elastin peptides on ion fluxes in mononuclear cells, fibroblasts, and smooth muscle cells. Proc Natl Acad Sci U S A. 1987 Feb;84(4):995–999. doi: 10.1073/pnas.84.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jesaitis A. J., Naemura J. R., Sklar L. A., Cochrane C. G., Painter R. G. Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: formation of high-affinity ligand-receptor complexes in transient association with cytoskeleton. J Cell Biol. 1984 Apr;98(4):1378–1387. doi: 10.1083/jcb.98.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kao R. T., Stern R. Elastases in human breast carcinoma cell lines. Cancer Res. 1986 Mar;46(3):1355–1358. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Netland P. A., Zetter B. R. Melanoma cell adhesion to defined extracellular matrix components. Biochem Biophys Res Commun. 1986 Sep 14;139(2):515–522. doi: 10.1016/s0006-291x(86)80021-3. [DOI] [PubMed] [Google Scholar]
  14. Polakis P. G., Uhing R. J., Snyderman R. The formylpeptide chemoattractant receptor copurifies with a GTP-binding protein containing a distinct 40-kDa pertussis toxin substrate. J Biol Chem. 1988 Apr 5;263(10):4969–4976. [PubMed] [Google Scholar]
  15. Rot A., Henderson L. E., Copeland T. D., Leonard E. J. A series of six ligands for the human formyl peptide receptor: tetrapeptides with high chemotactic potency and efficacy. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7967–7971. doi: 10.1073/pnas.84.22.7967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rucker R. B., Dubick M. A. Elastin metabolism and chemistry: potential roles in lung development and structure. Environ Health Perspect. 1984 Apr;55:179–191. doi: 10.1289/ehp.8455179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sandberg L. B., Soskel N. T., Leslie J. G. Elastin structure, biosynthesis, and relation to disease states. N Engl J Med. 1981 Mar 5;304(10):566–579. doi: 10.1056/NEJM198103053041004. [DOI] [PubMed] [Google Scholar]
  18. Senior R. M., Griffin G. L., Mecham R. P. Chemotactic activity of elastin-derived peptides. J Clin Invest. 1980 Oct;66(4):859–862. doi: 10.1172/JCI109926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Senior R. M., Griffin G. L., Mecham R. P., Wrenn D. S., Prasad K. U., Urry D. W. Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol. 1984 Sep;99(3):870–874. doi: 10.1083/jcb.99.3.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tobias J. W., Bern M. M., Netland P. A., Zetter B. R. Monocyte adhesion to subendothelial components. Blood. 1987 Apr;69(4):1265–1268. [PubMed] [Google Scholar]
  21. Verghese M. W., Smith C. D., Snyderman R. Role of guanine nucleotide regulatory protein in polyphosphoinositide degradation and activation of phagocytic leukocytes by chemoattractants. J Cell Biochem. 1986;32(1):59–69. doi: 10.1002/jcb.240320107. [DOI] [PubMed] [Google Scholar]
  22. Wrenn D. S., Hinek A., Mecham R. P. Kinetics of receptor-mediated binding of tropoelastin to ligament fibroblasts. J Biol Chem. 1988 Feb 15;263(5):2280–2284. [PubMed] [Google Scholar]
  23. Zigmond S. H., Sullivan S. J., Lauffenburger D. A. Kinetic analysis of chemotactic peptide receptor modulation. J Cell Biol. 1982 Jan;92(1):34–43. doi: 10.1083/jcb.92.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zigmond S. H., Tranquillo A. W. Chemotactic peptide binding by rabbit polymorphonuclear leukocytes. Presence of two compartments having similar affinities but different kinetics. J Biol Chem. 1986 Apr 25;261(12):5283–5288. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES