Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Nov 1;107(5):1793–1797. doi: 10.1083/jcb.107.5.1793

Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro

PMCID: PMC2115335  PMID: 2972730

Abstract

Our goal was to assess the microtubule translocating ability of individual ATPase subunits of outer arm dynein. Solubilized outer arm dynein from sea urchin sperm (Stronglocentrotus purpuratus) was dissociated into subunits by low ionic strength buffer and fractionated by zonal centrifugation. Fractions were assessed by an in vitro functional assay wherein microtubules move across a glass surface to which isolated dynein fractions had been absorbed. Microtubule gliding activity was coincident with the 12-S beta-heavy chain-intermediate chain 1 ATPase fractions (beta/IC1). Neither the alpha-heavy chain nor the intermediate chains 2 and 3 fractions coincided with microtubule gliding activity. The beta/IC1 ATPase induced very rapid gliding velocities (9.7 +/- 0.88 micron/s, range 7-11.5 micron/s) in 1 mM ATP- containing motility buffers. In direct comparison, isolated intact 21-S outer arm dynein, from which the beta/IC1 fraction was derived, induced slower microtubule gliding rates (21-S dynein, 5.6 +/- 0.7 micron/s; beta/IC1, 8.7 +/- 1.2 micron/s). These results demonstrate that a single subdomain in dynein, the beta/IC1 ATPase, is sufficient for microtubule sliding activity.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell C. W., Fraser C. L., Sale W. S., Tang W. J., Gibbons I. R. Preparation and purification of dynein. Methods Enzymol. 1982;85(Pt B):450–474. doi: 10.1016/0076-6879(82)85045-3. [DOI] [PubMed] [Google Scholar]
  2. Bell C. W., Fronk E., Gibbons I. R. Polypeptide subunits of dynein 1 from sea urchin sperm flagella. J Supramol Struct. 1979;11(3):311–317. doi: 10.1002/jss.400110305. [DOI] [PubMed] [Google Scholar]
  3. Bell C. W., Gibbons I. R. Structure of the dynein-1 outer arm in sea urchin sperm flagella. II. Analysis by proteolytic cleavage. J Biol Chem. 1982 Jan 10;257(1):516–522. [PubMed] [Google Scholar]
  4. Euteneuer U., Koonce M. P., Pfister K. K., Schliwa M. An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa. Nature. 1988 Mar 10;332(6160):176–178. doi: 10.1038/332176a0. [DOI] [PubMed] [Google Scholar]
  5. Fox L. A., Sale W. S. Direction of force generated by the inner row of dynein arms on flagellar microtubules. J Cell Biol. 1987 Oct;105(4):1781–1787. doi: 10.1083/jcb.105.4.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibbons B. H., Gibbons I. R. Relationship between the latent adenosine triphosphatase state of dynein 1 and its ability to recombine functionally with KCl-extracted sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):197–201. [PubMed] [Google Scholar]
  7. Gibbons I. R., Fronk E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):187–196. [PubMed] [Google Scholar]
  8. Gibbons I. R., Lee-Eiford A., Mocz G., Phillipson C. A., Tang W. J., Gibbons B. H. Photosensitized cleavage of dynein heavy chains. Cleavage at the "V1 site" by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem. 1987 Feb 25;262(6):2780–2786. [PubMed] [Google Scholar]
  9. Gibbons I. R. New jobs for dynein ATPases. Nature. 1987 Dec 17;330(6149):600–600. doi: 10.1038/330600a0. [DOI] [PubMed] [Google Scholar]
  10. Goodenough U. W., Heuser J. E. Outer and inner dynein arms of cilia and flagella. Cell. 1985 Jun;41(2):341–342. doi: 10.1016/s0092-8674(85)80003-9. [DOI] [PubMed] [Google Scholar]
  11. Haimo L. T., Fenton R. D. Interaction of Chlamydomonas dynein with tubulin. Cell Motil Cytoskeleton. 1988;9(2):129–139. doi: 10.1002/cm.970090205. [DOI] [PubMed] [Google Scholar]
  12. Haimo L. T., Fenton R. D. Microtubule crossbridging by chlamydomonas dynein. Cell Motil. 1984;4(5):371–385. doi: 10.1002/cm.970040506. [DOI] [PubMed] [Google Scholar]
  13. Haimo L. T., Telzer B. R., Rosenbaum J. L. Dynein binds to and crossbridges cytoplasmic microtubules. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5759–5763. doi: 10.1073/pnas.76.11.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu Rev Biophys Biophys Chem. 1985;14:161–188. doi: 10.1146/annurev.bb.14.060185.001113. [DOI] [PubMed] [Google Scholar]
  15. Koonce M. P., Tong J., Euteneuer U., Schliwa M. Active sliding between cytoplasmic microtubules. Nature. 1987 Aug 20;328(6132):737–739. doi: 10.1038/328737a0. [DOI] [PubMed] [Google Scholar]
  16. Lye R. J., Porter M. E., Scholey J. M., McIntosh J. R. Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans. Cell. 1987 Oct 23;51(2):309–318. doi: 10.1016/0092-8674(87)90157-7. [DOI] [PubMed] [Google Scholar]
  17. Okagaki T., Kamiya R. Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms. J Cell Biol. 1986 Nov;103(5):1895–1902. doi: 10.1083/jcb.103.5.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ow R. A., Tang W. J., Mocz G., Gibbons I. R. Tryptic digestion of dynein 1 in low salt medium. Origin and properties of fragment A. J Biol Chem. 1987 Mar 5;262(7):3409–3414. [PubMed] [Google Scholar]
  19. Paschal B. M., King S. M., Moss A. G., Collins C. A., Vallee R. B., Witman G. B. Isolated flagellar outer arm dynein translocates brain microtubules in vitro. Nature. 1987 Dec 17;330(6149):672–674. doi: 10.1038/330672a0. [DOI] [PubMed] [Google Scholar]
  20. Paschal B. M., Shpetner H. S., Vallee R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol. 1987 Sep;105(3):1273–1282. doi: 10.1083/jcb.105.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paschal B. M., Vallee R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. doi: 10.1038/330181a0. [DOI] [PubMed] [Google Scholar]
  22. Piperno G. Monoclonal antibodies to dynein subunits reveal the existence of cytoplasmic antigens in sea urchin egg. J Cell Biol. 1984 May;98(5):1842–1850. doi: 10.1083/jcb.98.5.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pratt M. M. Stable complexes of axoplasmic vesicles and microtubules: protein composition and ATPase activity. J Cell Biol. 1986 Sep;103(3):957–968. doi: 10.1083/jcb.103.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sale W. S., Goodenough U. W., Heuser J. E. The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella. J Cell Biol. 1985 Oct;101(4):1400–1412. doi: 10.1083/jcb.101.4.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sale W. S., Satir P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci U S A. 1977 May;74(5):2045–2049. doi: 10.1073/pnas.74.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Takahashi K., Shingyoji C., Kamimura S. Microtubule sliding in reactivated flagella. Symp Soc Exp Biol. 1982;35:159–177. [PubMed] [Google Scholar]
  27. Tang W. Y., Gibbons I. R. Photosensitized cleavage of dynein heavy chains. Cleavage at the V2 site by irradiation at 365 NM in the presence of oligovanadate. J Biol Chem. 1987 Dec 25;262(36):17728–17734. [PubMed] [Google Scholar]
  28. Toyoshima Y. Y., Kron S. J., McNally E. M., Niebling K. R., Toyoshima C., Spudich J. A. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature. 1987 Aug 6;328(6130):536–539. doi: 10.1038/328536a0. [DOI] [PubMed] [Google Scholar]
  29. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
  31. Vale R. D., Toyoshima Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell. 1988 Feb 12;52(3):459–469. doi: 10.1016/s0092-8674(88)80038-2. [DOI] [PubMed] [Google Scholar]
  32. Vallee R. B., Wall J. S., Paschal B. M., Shpetner H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature. 1988 Apr 7;332(6164):561–563. doi: 10.1038/332561a0. [DOI] [PubMed] [Google Scholar]
  33. Yano Y., Miki-Noumura T. Recovery of sliding ability in arm-depleted flagellar axonemes after recombination with extracted dynein I. J Cell Sci. 1981 Apr;48:223–239. doi: 10.1242/jcs.48.1.223. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES