Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jan 1;108(1):153–158. doi: 10.1083/jcb.108.1.153

Activity and regulation of calcium-, phospholipid-dependent protein kinase in differentiating chick myogenic cells

PMCID: PMC2115352  PMID: 2536031

Abstract

The activity of calcium-, phospholipid-dependent protein kinase (PKc) was measured in (a) total extracts, (b) crude membrane, and (c) cytosolic fractions of chick embryo myogenic cells differentiating in culture. Total PKc activity slowly declines during the course of terminal myogenesis in contrast to the activity of cAMP-dependent protein kinase, which was also measured in the same cells. Myogenic cells at day 1 of culture possess high particulate and low soluble PKc activity. A dramatic decline of particulate PKc activity occurs during myogenic cell differentiation and is accompanied, through day 4, by a striking rise of the soluble activity. The difference in the subcellular distribution of PKc between replicating myoblasts and myotubes is confirmed by phosphorylation studies conducted in intact cells. These studies demonstrate that four polypeptides whose phosphorylation is stimulated by the tumor promoter 12-O-tetradecanoyl phorbol 13-acetate in myotubes, are spontaneously phosphorylated in control myoblasts. Phosphoinositide turnover under basal conditions in [3H]inositol-labeled cells is faster in myoblasts than in myotubes, a finding that may in part explain the different distribution of PKc observed during the course of myogenic differentiation.

Full Text

The Full Text of this article is available as a PDF (837.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo S., Caporale C., Aguanno S., Lazdins J., Faggioni A., Belli L., Cortesi E., Nervi C., Gastaldi R., Molinaro M. Proliferating and quiescent cells exhibit different subcellular distribution of protein kinase C activity. FEBS Lett. 1986 Jan 20;195(1-2):352–356. doi: 10.1016/0014-5793(86)80192-2. [DOI] [PubMed] [Google Scholar]
  2. Adamo S., Zani B. M., Nervi C., Senni M. I., Molinaro M., Eusebi F. Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Lett. 1985 Oct 7;190(1):161–164. doi: 10.1016/0014-5793(85)80449-x. [DOI] [PubMed] [Google Scholar]
  3. Adamo S., Zani B., Siracusa G., Molinaro M. Expression of differentiative traits in the absence of cell fusion during myogenesis in culture. Cell Differ. 1976 Apr;5(1):53–67. doi: 10.1016/0045-6039(76)90015-4. [DOI] [PubMed] [Google Scholar]
  4. Ashendel C. L. The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim Biophys Acta. 1985 Sep 9;822(2):219–242. doi: 10.1016/0304-4157(85)90009-7. [DOI] [PubMed] [Google Scholar]
  5. Bell R. M. Protein kinase C activation by diacylglycerol second messengers. Cell. 1986 Jun 6;45(5):631–632. doi: 10.1016/0092-8674(86)90774-9. [DOI] [PubMed] [Google Scholar]
  6. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  7. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Billah M. M., Lapetina E. G. Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J Biol Chem. 1982 Nov 10;257(21):12705–12708. [PubMed] [Google Scholar]
  9. Bouchè M., Adamo S., Molinaro M. Phosphorylation of specific polypeptides induced by 12-O-tetradecanoylphorbol-13-acetate in chick embryo fibroblasts. Carcinogenesis. 1984 May;5(5):559–563. doi: 10.1093/carcin/5.5.559. [DOI] [PubMed] [Google Scholar]
  10. Bouché M., Adamo S., Molinaro M. Specific TPA-induced protein phosphorylations in cultured myotubes. Cell Biol Int Rep. 1983 Mar;7(3):189–189. doi: 10.1016/0309-1651(83)90219-9. [DOI] [PubMed] [Google Scholar]
  11. Burn P. Amphitropic proteins: a new class of membrane proteins. Trends Biochem Sci. 1988 Mar;13(3):79–83. doi: 10.1016/0968-0004(88)90043-6. [DOI] [PubMed] [Google Scholar]
  12. Caratsch C. G., Grassi F., Molinaro M., Eusebi F. Postsynaptic effects of the phorbol ester TPA on frog end-plates. Pflugers Arch. 1986 Oct;407(4):409–413. doi: 10.1007/BF00652626. [DOI] [PubMed] [Google Scholar]
  13. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  14. Cossu G., Adamo S., Senni M. I., Caporale C., Molinaro M. Altered distribution of protein kinase C in dystrophic muscle cells and its modulation by liposome-delivered phospholipids. Biochem Biophys Res Commun. 1986 Jun 13;137(2):752–758. doi: 10.1016/0006-291x(86)91143-5. [DOI] [PubMed] [Google Scholar]
  15. Cossu G., Pacifici M., Adamo S., Bouché M., Molinaro M. TPA-induced inhibition of the expression of differentiative traits in cultured myotubes: dependence on protein synthesis. Differentiation. 1982;21(1):62–65. doi: 10.1111/j.1432-0436.1982.tb01197.x. [DOI] [PubMed] [Google Scholar]
  16. Creba J. A., Downes C. P., Hawkins P. T., Brewster G., Michell R. H., Kirk C. J. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochem J. 1983 Jun 15;212(3):733–747. doi: 10.1042/bj2120733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Croop J., Dubyak G., Toyama Y., Dlugosz A., Scarpa A., Holtzer H. Effects of 12-O-tetradecanoyl-phorbol-13-acetate on Myofibril integrity and Ca2+ content in developing myotubes. Dev Biol. 1982 Feb;89(2):460–474. doi: 10.1016/0012-1606(82)90334-7. [DOI] [PubMed] [Google Scholar]
  18. Drust D. S., Martin T. F. Protein kinase C translocates from cytosol to membrane upon hormone activation: effects of thyrotropin-releasing hormone in GH3 cells. Biochem Biophys Res Commun. 1985 Apr 30;128(2):531–537. doi: 10.1016/0006-291x(85)90079-8. [DOI] [PubMed] [Google Scholar]
  19. Eusebi F., Grassi F., Nervi C., Caporale C., Adamo S., Zani B. M., Molinaro M. Acetylcholine may regulate its own nicotinic receptor-channel through the C-kinase system. Proc R Soc Lond B Biol Sci. 1987 Apr 22;230(1260):355–365. doi: 10.1098/rspb.1987.0024. [DOI] [PubMed] [Google Scholar]
  20. Galdieri M., Caporale C., Adamo S. Calcium-, phospholipid-dependent protein kinase activity of cultured rat Sertoli cells and its modifications by vitamin A. Mol Cell Endocrinol. 1986 Dec;48(2-3):213–220. doi: 10.1016/0303-7207(86)90044-4. [DOI] [PubMed] [Google Scholar]
  21. Hannun Y. A., Bell R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science. 1987 Feb 6;235(4789):670–674. doi: 10.1126/science.3101176. [DOI] [PubMed] [Google Scholar]
  22. Iwasa Y., Hosey M. M. Phosphorylation of cardiac sarcolemma proteins by the calcium-activated phospholipid-dependent protein kinase. J Biol Chem. 1984 Jan 10;259(1):534–540. [PubMed] [Google Scholar]
  23. Kikkawa U., Takai Y., Minakuchi R., Inohara S., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification, and properties. J Biol Chem. 1982 Nov 25;257(22):13341–13348. [PubMed] [Google Scholar]
  24. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 1983 Oct 10;258(19):11442–11445. [PubMed] [Google Scholar]
  25. Kiss Z., Steinberg R. A. Phorbol ester-mediated protein phosphorylations in S49 mouse lymphoma cells. Cancer Res. 1985 Jun;45(6):2732–2740. [PubMed] [Google Scholar]
  26. Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. May W. S., Jr, Sahyoun N., Wolf M., Cuatrecasas P. Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes. Nature. 1985 Oct 10;317(6037):549–551. doi: 10.1038/317549a0. [DOI] [PubMed] [Google Scholar]
  29. Movsesian M. A., Nishikawa M., Adelstein R. S. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem. 1984 Jul 10;259(13):8029–8032. [PubMed] [Google Scholar]
  30. Nestler E. J., Walaas S. I., Greengard P. Neuronal phosphoproteins: physiological and clinical implications. Science. 1984 Sep 21;225(4668):1357–1364. doi: 10.1126/science.6474180. [DOI] [PubMed] [Google Scholar]
  31. Nishikawa M., Sellers J. R., Adelstein R. S., Hidaka H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem. 1984 Jul 25;259(14):8808–8814. [PubMed] [Google Scholar]
  32. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  33. Patel M. D., Samelson L. E., Klausner R. D. Multiple kinases and signal transduction. Phosphorylation of the T cell antigen receptor complex. J Biol Chem. 1987 Apr 25;262(12):5831–5838. [PubMed] [Google Scholar]
  34. Richter E. A., Cleland P. J., Rattigan S., Clark M. G. Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett. 1987 Jun 15;217(2):232–236. doi: 10.1016/0014-5793(87)80669-5. [DOI] [PubMed] [Google Scholar]
  35. Wakelam M. J. Inositol phospholipid metabolism and myoblast fusion. Biochem J. 1983 Jul 15;214(1):77–82. doi: 10.1042/bj2140077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wakelam M. J. Stimulated inositol phospholipid breakdown and myoblast fusion. Biochem Soc Trans. 1986 Apr;14(2):253–256. doi: 10.1042/bst0140253. [DOI] [PubMed] [Google Scholar]
  37. Wakelam M. J. The fusion of myoblasts. Biochem J. 1985 May 15;228(1):1–12. doi: 10.1042/bj2280001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wise B. C., Glass D. B., Chou C. H., Raynor R. L., Katoh N., Schatzman R. C., Turner R. S., Kibler R. F., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. Substrate specificity and inhibition by various agents. J Biol Chem. 1982 Jul 25;257(14):8489–8495. [PubMed] [Google Scholar]
  39. Young S., Parker P. J., Ullrich A., Stabel S. Down-regulation of protein kinase C is due to an increased rate of degradation. Biochem J. 1987 Jun 15;244(3):775–779. doi: 10.1042/bj2440775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zalin R. J., Montague W. Changes in adenylate cyclase, cyclic AMP, and protein kinase levels in chick myoblasts, and their relationship to differentiation. Cell. 1974 Jun;2(2):103–108. doi: 10.1016/0092-8674(74)90098-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES