Abstract
During the mating reaction in Chlamydomonas reinhardtii mating type plus and mating type minus gametes adhere to each other via adhesion molecules on their flagellar surfaces. This adhesive interaction induces a sexual signal leading to release of a cell wall degrading enzyme, lysin, that causes wall release and degradation. In this article, we describe the preparation of a polyclonal antibody against the 60,000-Mr lysin polypeptide excised from SDS-PAGE gels. After absorption of the IgG with cell walls to remove antibodies against a carbohydrate epitope common to several Chlamydomonas glycoproteins, the immune IgG reacted with the 60,000-Mr polypeptide, and a 47,000-Mr species that we show here was immunologically cross-reactive with the 60,000-Mr molecule. By use of several fractionation methods including ion exchange and molecular sieve chromatography, sucrose gradient centrifugation, and affinity chromatography, we showed that the 60,000- Mr antigen copurified with lysin activity, thereby demonstrating that the antibody was indeed directed against the enzyme. Immunoblot experiments on suspensions of nonmating and mating gametes showed that the 60,000-Mr antigen was missing in the nonmating gametes. Instead, they contained a 62,000-Mr antigen that was not present in suspensions of mating gametes that had undergone sexual signalling. Furthermore, nonmating gametes whose walls were removed with exogenously added lysin did not contain either form of the antigen. We also found that the 62,000-Mr form of the antigen, which could be released from gametes by freeze-thawing, did not have wall degrading activity. These results indicate that lysin in gametes is stored in the periplasm as a higher relative molecular mass, inactive precursor and also that sexual signalling induces conversion of this molecule to a lower relative molecular mass, active enzyme. This may be a novel example of processing of an extracellular protease induced by cell contact.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair W. S. Characterization of Chlamydomonas sexual agglutinins. J Cell Sci Suppl. 1985;2:233–260. doi: 10.1242/jcs.1985.supplement_2.13. [DOI] [PubMed] [Google Scholar]
- Bean Geotactiv behavior of Chlamydomonas. J Protozool. 1977 Aug;24(3):394–401. doi: 10.1111/j.1550-7408.1977.tb04759.x. [DOI] [PubMed] [Google Scholar]
- Bloodgood R. A., Levin E. N. Transient increase in calcium efflux accompanies fertilization in Chlamydomonas. J Cell Biol. 1983 Aug;97(2):397–404. doi: 10.1083/jcb.97.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan M. J., Snell W. J. Biochemical studies on lysin, a cell wall degrading enzyme released during fertilization in Chlamydomonas. Exp Cell Res. 1988 Nov;179(1):181–193. doi: 10.1016/0014-4827(88)90357-6. [DOI] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Claes H. Autolyse der Zellwand bei den Gemeten von Chlamydomonas reinhardii. Arch Mikrobiol. 1971;78(2):180–188. [PubMed] [Google Scholar]
- Claes H. Non-specific stimulation of the autolytic system in gametes from Chlamydomonas reinhardii. Exp Cell Res. 1977 Aug;108(1):221–229. [PubMed] [Google Scholar]
- Detmers P. A., Condeelis J. Trifluoperazine and W-7 inhibit mating in Chlamydomonas at an early stage of gametic interaction. Exp Cell Res. 1986 Apr;163(2):317–326. doi: 10.1016/0014-4827(86)90063-7. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Goodenough U. W., Adair W. S., Caligor E., Forest C. L., Hoffman J. L., Mesland D. A., Spath S. Membrane-membrane and membrane-ligand interactions in Chlamydomonas mating. Soc Gen Physiol Ser. 1980;34:131–152. [PubMed] [Google Scholar]
- Imam S. H., Buchanan M. J., Shin H. C., Snell W. J. The Chlamydomonas cell wall: characterization of the wall framework. J Cell Biol. 1985 Oct;101(4):1599–1607. doi: 10.1083/jcb.101.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imam S. H., Snell W. J. The Chlamydomonas cell wall degrading enzyme, lysin, acts on two substrates within the framework of the wall. J Cell Biol. 1988 Jun;106(6):2211–2221. doi: 10.1083/jcb.106.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaenicke L., Kuhne W., Spessert R., Wahle U., Waffenschmidt S. Cell-wall lytic enzymes (autolysins) of Chlamydomonas reinhardtii are (hydroxy)proline-specific proteases. Eur J Biochem. 1987 Dec 30;170(1-2):485–491. doi: 10.1111/j.1432-1033.1987.tb13725.x. [DOI] [PubMed] [Google Scholar]
- Jarvik J. W., Rosenbaum J. L. Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii. J Cell Biol. 1980 May;85(2):258–272. doi: 10.1083/jcb.85.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaska D. D., Piscopo I. C., Gibor A. Intracellular calcium redistribution during mating in Chlamydomonas reinhardii. Exp Cell Res. 1985 Oct;160(2):371–379. doi: 10.1016/0014-4827(85)90183-1. [DOI] [PubMed] [Google Scholar]
- Matsuda Y., Saito T., Yamaguchi T., Kawase H. Cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii is a metalloprotease and digests the sodium perchlorate-insoluble component of cell wall. J Biol Chem. 1985 May 25;260(10):6373–6377. [PubMed] [Google Scholar]
- Matsuda Y., Saito T., Yamaguchi T., Koseki M., Hayashi K. Topography of cell wall lytic enzyme in Chlamydomonas reinhardtii: form and location of the stored enzyme in vegetative cell and gamete. J Cell Biol. 1987 Feb;104(2):321–329. doi: 10.1083/jcb.104.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
- Millikin B. E., Weiss R. L. Distribution of concanavalin a binding carbohydrates during mating in Chlamydomonas. J Cell Sci. 1984 Mar;66:223–239. doi: 10.1242/jcs.66.1.223. [DOI] [PubMed] [Google Scholar]
- North M. J. Comparative biochemistry of the proteinases of eucaryotic microorganisms. Microbiol Rev. 1982 Sep;46(3):308–340. doi: 10.1128/mr.46.3.308-340.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
- Parrish R. F., Polakoski K. L. Mammalian sperm proacrosin-acrosin system. Int J Biochem. 1979;10(5):391–395. doi: 10.1016/0020-711x(79)90061-2. [DOI] [PubMed] [Google Scholar]
- Pasquale S. M., Goodenough U. W. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol. 1987 Nov;105(5):2279–2292. doi: 10.1083/jcb.105.5.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snell W. J., Buchanan M., Clausell A. Lidocaine reversibly inhibits fertilization in Chlamydomonas: a possible role for calcium in sexual signalling. J Cell Biol. 1982 Sep;94(3):607–612. doi: 10.1083/jcb.94.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snell W. J. Study of the release of cell wall degrading enzymes during adhesion of Chlamydomonas gametes. Exp Cell Res. 1982 Mar;138(1):109–119. doi: 10.1016/0014-4827(82)90096-9. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward M. P., Young W. W., Jr, Bloodgood R. A. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985 Apr 8;78(1):143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]