Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jan 1;108(1):141–151. doi: 10.1083/jcb.108.1.141

Analysis of the calcium-modulated proteins, S100 and calmodulin, and their target proteins during C6 glioma cell differentiation

PMCID: PMC2115359  PMID: 2910876

Abstract

We have analyzed the levels, subcellular distribution, and target proteins of two calcium-modulated proteins, S100 and calmodulin, in differentiated and undifferentiated rat C6 glioma cells. Undifferentiated and differentiated C6 cells express primarily the S100 beta polypeptide, and the S100 beta levels are four-fold higher in differentiated compared to undifferentiated cells. Double fluorescent labeling studies of undifferentiated cells demonstrated that S100 beta staining localized to a small region of the perinuclear cytoplasm and colocalized with the microtubule organizing center and Golgi apparatus. Analysis of differentiated C6 cells demonstrated that S100 beta distribution and S100 beta-binding protein profile changed significantly upon differentiation. In addition, the brain-specific isozyme of one S100-binding protein, fructose-1,6-bisphosphate aldolase C, can be detected in differentiated but not undifferentiated C6 cells. While changes in the subcellular distribution of calmodulin were not observed during differentiation, calmodulin levels and calmodulin- binding protein profiles did change. Altogether these data suggest that S100 beta and calmodulin regulate different processes in glial cells and that the regulation of the expression, subcellular distribution, and target proteins of S100 beta and calmodulin during differentiation is a complex process which involves multiple mechanisms.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudier J., Cole R. D. Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1988 Apr 25;263(12):5876–5883. [PubMed] [Google Scholar]
  2. Baudier J., Labourdette G., Gerard D. Rat brain S100b protein: purification, characterization, and ion binding properties. A comparison with bovine S100b protein. J Neurochem. 1985 Jan;44(1):76–84. doi: 10.1111/j.1471-4159.1985.tb07115.x. [DOI] [PubMed] [Google Scholar]
  3. Baudier J., Mochly-Rosen D., Newton A., Lee S. H., Koshland D. E., Jr, Cole R. D. Comparison of S100b protein with calmodulin: interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C. Biochemistry. 1987 May 19;26(10):2886–2893. doi: 10.1021/bi00384a033. [DOI] [PubMed] [Google Scholar]
  4. Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
  5. Brostrom C. O., Wolff D. J. Calcium-dependent cyclic nucleotide phosphodiesterase from glial tumor cells. Arch Biochem Biophys. 1974 Dec;165(2):715–727. doi: 10.1016/0003-9861(74)90300-2. [DOI] [PubMed] [Google Scholar]
  6. Burgess W. H., Watterson D. M., Van Eldik L. J. Identification of calmodulin-binding proteins in chicken embryo fibroblasts. J Cell Biol. 1984 Aug;99(2):550–557. doi: 10.1083/jcb.99.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cicero T. J., Ferrendelli J. A., Suntzeff V., Moore B. W. Regional changes in CNS levels of the S-100 and 14-3-2 proteins during development and aging of the mouse. J Neurochem. 1972 Sep;19(9):2119–2125. doi: 10.1111/j.1471-4159.1972.tb05121.x. [DOI] [PubMed] [Google Scholar]
  8. Donato R. Calcium-independent, pH-regulated effects of S-100 proteins on assembly-disassembly of brain microtubule protein in vitro. J Biol Chem. 1988 Jan 5;263(1):106–110. [PubMed] [Google Scholar]
  9. Donato R. Calcium-sensitivity of brain microtubule proteins in the presence of S-100 proteins. Cell Calcium. 1985 Aug;6(4):343–361. doi: 10.1016/0143-4160(85)90004-1. [DOI] [PubMed] [Google Scholar]
  10. Donato R. S-100 proteins. Cell Calcium. 1986 Jun;7(3):123–145. doi: 10.1016/0143-4160(86)90017-5. [DOI] [PubMed] [Google Scholar]
  11. Donta S. T. The growth of functional rat glial cells in a serumless medium. Exp Cell Res. 1973 Nov;82(1):119–124. doi: 10.1016/0014-4827(73)90252-8. [DOI] [PubMed] [Google Scholar]
  12. Fan K., Uzman B. G. Rat glioma cells (C6) cultured in serum-free defined medium. Exp Cell Res. 1977 May;106(2):397–401. doi: 10.1016/0014-4827(77)90188-4. [DOI] [PubMed] [Google Scholar]
  13. Fiskum G., Craig S. W., Decker G. L., Lehninger A. L. The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3430–3434. doi: 10.1073/pnas.77.6.3430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ghandour M. S., Langley O. K., Labourdette G., Vincendon G., Gombos G. Specific and artefactual cellular localizations of S 100 protein: an astrocyte marker in rat cerebellum. Dev Neurosci. 1981;4(1):66–78. doi: 10.1159/000112742. [DOI] [PubMed] [Google Scholar]
  15. Hagiwara M., Ochiai M., Owada K., Tanaka T., Hidaka H. Modulation of tyrosine phosphorylation of p36 and other substrates by the S-100 protein. J Biol Chem. 1988 May 5;263(13):6438–6441. [PubMed] [Google Scholar]
  16. Haglid K. G., Hansson H. A., Rönnbäck L. S-100 in the central nervous system of rat, rabbit and guinea pig during postnatal development. Brain Res. 1977 Mar 11;123(2):331–345. doi: 10.1016/0006-8993(77)90484-x. [DOI] [PubMed] [Google Scholar]
  17. Hertzberg E. L., Van Eldik L. J. Interaction of calmodulin and other calcium-modulated proteins with gap junctions. Methods Enzymol. 1987;139:445–454. doi: 10.1016/0076-6879(87)39105-0. [DOI] [PubMed] [Google Scholar]
  18. Higashida H., Sano M., Kato K. Forskolin induction of S-100 protein in glioma and hybrid cells. J Cell Physiol. 1985 Jan;122(1):39–44. doi: 10.1002/jcp.1041220107. [DOI] [PubMed] [Google Scholar]
  19. Hirschfeld A., Bressler J. Effect of sodium butyrate on S-100 protein levels and the cAMP response. J Cell Physiol. 1987 Oct;133(1):158–162. doi: 10.1002/jcp.1041330120. [DOI] [PubMed] [Google Scholar]
  20. Isobe T., Okuyama T. The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur J Biochem. 1978 Sep 1;89(2):379–388. doi: 10.1111/j.1432-1033.1978.tb12539.x. [DOI] [PubMed] [Google Scholar]
  21. Isobe T., Okuyama T. The amino-acid sequence of the alpha subunit in bovine brain S-100a protein. Eur J Biochem. 1981 May;116(1):79–86. doi: 10.1111/j.1432-1033.1981.tb05303.x. [DOI] [PubMed] [Google Scholar]
  22. Klee C. B., Vanaman T. C. Calmodulin. Adv Protein Chem. 1982;35:213–321. doi: 10.1016/s0065-3233(08)60470-2. [DOI] [PubMed] [Google Scholar]
  23. Kumanishi T., Ikuta F., Yamamoto T., Maruyama N., Nishida K. Aldolase C in cultrued rat glioma. J Neurochem. 1975 May;24(5):1081–1082. doi: 10.1111/j.1471-4159.1975.tb03681.x. [DOI] [PubMed] [Google Scholar]
  24. Kumanishi T., Watabe K., Washiyama K. An immunohistochemical study of aldolase C in normal and neoplastic nervous tissues. Acta Neuropathol. 1985;67(3-4):309–314. doi: 10.1007/BF00687817. [DOI] [PubMed] [Google Scholar]
  25. Kuwano R., Maeda T., Usui H., Araki K., Yamakuni T., Ohshima Y., Kurihara T., Takahashi Y. Molecular cloning of cDNA of S100 alpha subunit mRNA. FEBS Lett. 1986 Jun 23;202(1):97–101. doi: 10.1016/0014-5793(86)80656-1. [DOI] [PubMed] [Google Scholar]
  26. Kuwano R., Usui H., Maeda T., Araki K., Yamakuni T., Kurihara T., Takahashi Y. Tissue distribution of rat S-100 alpha and beta subunit mRNAs. Brain Res. 1987 Apr;388(1):79–82. [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Labourdette G., Mandel P. Effect of norepinephrine and dibutyryl cyclic AMP on S-100 protein level in C6 glioma cells. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1702–1709. doi: 10.1016/0006-291x(80)91370-4. [DOI] [PubMed] [Google Scholar]
  29. Labourdette G., Marks A. Synthesis of S-100 protein in monolayer cultures of rat-glial cells. Eur J Biochem. 1975 Oct 1;58(1):73–79. doi: 10.1111/j.1432-1033.1975.tb02350.x. [DOI] [PubMed] [Google Scholar]
  30. Lee Y. C., Wolff J. Calmodulin binds to both microtubule-associated protein 2 and tau proteins. J Biol Chem. 1984 Jan 25;259(2):1226–1230. [PubMed] [Google Scholar]
  31. Lukas T. J., Watterson D. M. Purification of calmodulin and preparation of immobilized calmodulin. Methods Enzymol. 1988;157:328–339. doi: 10.1016/0076-6879(88)57088-x. [DOI] [PubMed] [Google Scholar]
  32. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McMorris F. A. Norepinephrine induces glial-specific enzyme activity in cultured plasma glioma cells. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4501–4504. doi: 10.1073/pnas.74.10.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Penhoet E. E., Kochman M., Rutter W. J. Molecular and catalytic properties of aldolase C. Biochemistry. 1969 Nov;8(11):4396–4402. doi: 10.1021/bi00839a026. [DOI] [PubMed] [Google Scholar]
  35. Raju T. R., Bignami A., Dahl D. Glial fibrillary acidic protein in monolayer cultures of C-6 glioma cells: effect of aging and dibutyryl cyclic AMP. Brain Res. 1980 Oct 27;200(1):225–230. doi: 10.1016/0006-8993(80)91114-2. [DOI] [PubMed] [Google Scholar]
  36. Rogalski A. A., Singer S. J. Associations of elements of the Golgi apparatus with microtubules. J Cell Biol. 1984 Sep;99(3):1092–1100. doi: 10.1083/jcb.99.3.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sato S., Shimizu K., Sugimura T., Takaoka T., Katsuta H. Aldolase C in cultured mouse glioblastoma cells. Cancer Res. 1972 Jun;32(6):1290–1292. [PubMed] [Google Scholar]
  38. Steinbach J. H., Schubert D. Multiple modes of dibutyryl cyclic AMP-induced process formation by clonal nerve and glial cells. Exp Cell Res. 1975 Mar 15;91(2):449–453. doi: 10.1016/0014-4827(75)90126-3. [DOI] [PubMed] [Google Scholar]
  39. Stewart J. A., Urban M. I. The postnatal accumulation of S-100 protein in mouse central nervous system. Modulation of protein synthesis and degradation. Dev Biol. 1972 Dec;29(4):372–384. doi: 10.1016/0012-1606(72)90078-4. [DOI] [PubMed] [Google Scholar]
  40. Tabuchi K., Furuta T., Norikane H., Tsuboi M., Moriya Y., Nishimoto A. Evaluation of the drug-induced morphological differentiation of rat glioma cells (C-6) from the aspects of S-100 protein level and con A binding pattern. J Neurol Sci. 1981 Jul;51(1):119–130. doi: 10.1016/0022-510x(81)90065-4. [DOI] [PubMed] [Google Scholar]
  41. Thompson R. J., Kynoch P. A., Willson V. J. Cellular localization of aldolase C subunits in human brain. Brain Res. 1982 Jan 28;232(2):489–493. doi: 10.1016/0006-8993(82)90294-3. [DOI] [PubMed] [Google Scholar]
  42. Van Eldik L. J., Fok K. F., Erickson B. W., Watterson D. M. Engineering of site-directed antisera against vertebrate calmodulin by using synthetic peptide immunogens containing an immunoreactive site. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6775–6779. doi: 10.1073/pnas.80.22.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Van Eldik L. J., Watterson D. M. Reproducible production of antiserum against vertebrate calmodulin and determination of the immunoreactive site. J Biol Chem. 1981 May 10;256(9):4205–4210. [PubMed] [Google Scholar]
  44. Van Eldik L. J., Zimmer D. B. Secretion of S-100 from rat C6 glioma cells. Brain Res. 1987 Dec 15;436(2):367–370. doi: 10.1016/0006-8993(87)91681-7. [DOI] [PubMed] [Google Scholar]
  45. Virtanen I., Ekblom P., Laurila P. Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells. J Cell Biol. 1980 May;85(2):429–434. doi: 10.1083/jcb.85.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Willingham M. C. Cyclic AMP and cell behavior in cultured cells. Int Rev Cytol. 1976;44:319–363. doi: 10.1016/s0074-7696(08)61652-6. [DOI] [PubMed] [Google Scholar]
  47. Zimmer D. B., Van Eldik L. J. Identification of a molecular target for the calcium-modulated protein S100. Fructose-1,6-bisphosphate aldolase. J Biol Chem. 1986 Aug 25;261(24):11424–11428. [PubMed] [Google Scholar]
  48. Zimmer D. B., Van Eldik L. J. Levels and distribution of the calcium-modulated proteins S100 and calmodulin in rat C6 glioma cells. J Neurochem. 1988 Feb;50(2):572–579. doi: 10.1111/j.1471-4159.1988.tb02949.x. [DOI] [PubMed] [Google Scholar]
  49. Zimmer D. B., Van Eldik L. J. Tissue distribution of rat S100 alpha and S100 beta and S100-binding proteins. Am J Physiol. 1987 Mar;252(3 Pt 1):C285–C289. doi: 10.1152/ajpcell.1987.252.3.C285. [DOI] [PubMed] [Google Scholar]
  50. Zuckerman J. E., Herschman H. R., Levine L. Appearance of a brain specific antigen (th S-100 protein) during human foetal development. J Neurochem. 1970 Feb;17(2):247–251. doi: 10.1111/j.1471-4159.1970.tb02207.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES