Abstract
Nematode sperm extend pseudopods and pull themselves over substrates. They lack an axoneme or the actin and myosins of other types of motile cells, but their pseudopods contain abundant major sperm protein (MSP), a family of 14-kD polypeptides found exclusively in male gametes. Using high voltage electron microscopy, a unique cytoskeleton was discovered in the pseudopod of in vitro-activated, crawling sperm of the pig intestinal nematode Ascaris suum. It consists of 5-10-nm fuzzy fibers organized into 150-250-nm-thick fiber complexes, which connect to each of the moving pseudopodial membrane projections, villipodia, which in turn make contact with the substrate. Individual fibers in a complex splay out radially from its axis in all directions. The centripetal ends intercalate with fibers from other complexes or terminate in a thickened layer just beneath the pseudopod membrane. Monoclonal antibodies directed against MSP heavily label the fiber complexes as well as individual pseudopodial filaments throughout their length. This represents the first evidence that MSP may be the major filament protein in the Ascaris sperm cytoskeleton. The large fiber complexes can be seen clearly in the pseudopods of live, crawling sperm by computer-enhanced video, differential-interference contrast microscopy, forming with the villipodia at the leading edge of the sperm pseudopod. Even before the pseudopod attaches, the entire cytoskeleton and villipodia move continuously rearwards in unison toward the cell body. During crawling, complexes and villipodia in the pseudopod recede at the same speed as the spermatozoon moves forward, both disappearing at the pseudopod-cell body junction. Sections at this region of high membrane turnover reveal a band of densely packed smooth vesicles with round and tubular profiles, some of which are associated with the pseudopod plasma membrane. The exceptional anatomy, biochemistry, and phenomenology of Ascaris sperm locomotion permit direct study of the involvement of the cytoskeleton in amoeboid motility.
Full Text
The Full Text of this article is available as a PDF (4.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbas M. K., Cain G. D. Amino acid and lipid composition of refringent granules from the ameboid sperm of Ascaris suum (Nematoda). Histochemistry. 1984;81(1):59–65. doi: 10.1007/BF00495402. [DOI] [PubMed] [Google Scholar]
- Bennett K. L., Ward S. Neither a germ line-specific nor several somatically expressed genes are lost or rearranged during embryonic chromatin diminution in the nematode Ascaris lumbricoides var. suum. Dev Biol. 1986 Nov;118(1):141–147. doi: 10.1016/0012-1606(86)90081-3. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S., Bretcher M. S. Fibroblasts on the move. J Cell Biol. 1988 Feb;106(2):235–237. doi: 10.1083/jcb.106.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bretscher M. S. Distribution of receptors for transferrin and low density lipoprotein on the surface of giant HeLa cells. Proc Natl Acad Sci U S A. 1983 Jan;80(2):454–458. doi: 10.1073/pnas.80.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burghardt R. C., Foor W. E. Membrane fusion during spermiogenesis in Ascaris. J Ultrastruct Res. 1978 Feb;62(2):190–202. doi: 10.1016/s0022-5320(78)90032-1. [DOI] [PubMed] [Google Scholar]
- Burke D. J., Ward S. Identification of a large multigene family encoding the major sperm protein of Caenorhabditis elegans. J Mol Biol. 1983 Nov 25;171(1):1–29. doi: 10.1016/s0022-2836(83)80312-x. [DOI] [PubMed] [Google Scholar]
- Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
- De Lozanne A., Spudich J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science. 1987 May 29;236(4805):1086–1091. doi: 10.1126/science.3576222. [DOI] [PubMed] [Google Scholar]
- Foor W. E., Johnson M. H., Beaver P. C. Morphological changes in the spermatozoa of Dipetalonema viteae in utero. J Parasitol. 1971 Dec;57(6):1163–1169. [PubMed] [Google Scholar]
- Foor W. E. Morphological changes of spermatozoa in the uterus and glandular vas deferens of Brugia pahangi. J Parasitol. 1974 Feb;60(1):125–133. [PubMed] [Google Scholar]
- Ishihara A., Holifield B., Jacobson K. Analysis of lateral redistribution of a plasma membrane glycoprotein-monoclonal antibody complex [corrected]. J Cell Biol. 1988 Feb;106(2):329–343. doi: 10.1083/jcb.106.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knecht D. A., Loomis W. F. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science. 1987 May 29;236(4805):1081–1086. doi: 10.1126/science.3576221. [DOI] [PubMed] [Google Scholar]
- Köhler P., Bachmann R. Mechanisms of respiration and phosphorylation in Ascaris muscle mitochondria. Mol Biochem Parasitol. 1980 Apr;1(2):75–90. doi: 10.1016/0166-6851(80)90002-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson G. A., Ward S. Amoeboid motility and actin in Ascaris lumbricoides sperm. Exp Cell Res. 1981 Jan;131(1):149–160. doi: 10.1016/0014-4827(81)90415-8. [DOI] [PubMed] [Google Scholar]
- Nelson G. A., Ward S. Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell. 1980 Feb;19(2):457–464. doi: 10.1016/0092-8674(80)90520-6. [DOI] [PubMed] [Google Scholar]
- Pavalko F. M., Roberts T. M. Caenorhabditis elegans spermatozoa assemble membrane proteins onto the surface at the tips of pseudopodial projections. Cell Motil Cytoskeleton. 1987;7(2):169–177. doi: 10.1002/cm.970070209. [DOI] [PubMed] [Google Scholar]
- Pawley J. B., Sepsenwol S., Ris H. Four-dimensional microscopy of Ascaris sperm motility. Ann N Y Acad Sci. 1986;483:171–180. doi: 10.1111/j.1749-6632.1986.tb34516.x. [DOI] [PubMed] [Google Scholar]
- Pollard T. D. Assembly and dynamics of the actin filament system in nonmuscle cells. J Cell Biochem. 1986;31(2):87–95. doi: 10.1002/jcb.240310202. [DOI] [PubMed] [Google Scholar]
- Pollard T. D. Cytoplasmic contractile proteins. J Cell Biol. 1981 Dec;91(3 Pt 2):156s–165s. doi: 10.1083/jcb.91.3.156s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ris H. The cytoplasmic filament system in critical point-dried whole mounts and plastic-embedded sections. J Cell Biol. 1985 May;100(5):1474–1487. doi: 10.1083/jcb.100.5.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts T. M. Fine (2-5-nm) filaments: new types of cytoskeletal structures. Cell Motil Cytoskeleton. 1987;8(2):130–142. doi: 10.1002/cm.970080205. [DOI] [PubMed] [Google Scholar]
- Roberts T. M., Pavalko F. M., Ward S. Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis. J Cell Biol. 1986 May;102(5):1787–1796. doi: 10.1083/jcb.102.5.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts T. M., Streitmatter G. Membrane-substrate contact under the spermatozoon of Caenorhabditis elegans, a crawling cell that lacks filamentous actin. J Cell Sci. 1984 Jul;69:117–126. doi: 10.1242/jcs.69.1.117. [DOI] [PubMed] [Google Scholar]
- Roberts T. M., Ward S. Centripetal flow of pseudopodial surface components could propel the amoeboid movement of Caenorhabditis elegans spermatozoa. J Cell Biol. 1982 Jan;92(1):132–138. doi: 10.1083/jcb.92.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts T. M., Ward S. Membrane flow during nematode spermiogenesis. J Cell Biol. 1982 Jan;92(1):113–120. doi: 10.1083/jcb.92.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts T. M., Ward S. Membrane flow during nematode spermiogenesis. J Cell Biol. 1982 Jan;92(1):113–120. doi: 10.1083/jcb.92.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sepsenwol S., Nguyen M., Braun T. Adenylate cyclase activity is absent in inactive and motile sperm in the nematode parasite, Ascaris suum. J Parasitol. 1986 Dec;72(6):962–964. [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
- Ward S., Argon Y., Nelson G. A. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol. 1981 Oct;91(1):26–44. doi: 10.1083/jcb.91.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward S., Hogan E., Nelson G. A. The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol. 1983 Jul;98(1):70–79. doi: 10.1016/0012-1606(83)90336-6. [DOI] [PubMed] [Google Scholar]
- Ward S., Klass M. The location of the major protein in Caenorhabditis elegans sperm and spermatocytes. Dev Biol. 1982 Jul;92(1):203–208. doi: 10.1016/0012-1606(82)90164-6. [DOI] [PubMed] [Google Scholar]
- Ward S., Roberts T. M., Strome S., Pavalko F. M., Hogan E. Monoclonal antibodies that recognize a polypeptide antigenic determinant shared by multiple Caenorhabditis elegans sperm-specific proteins. J Cell Biol. 1986 May;102(5):1778–1786. doi: 10.1083/jcb.102.5.1778. [DOI] [PMC free article] [PubMed] [Google Scholar]