Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Mar 1;108(3):1157–1163. doi: 10.1083/jcb.108.3.1157

Perineurial cells coexpress genes encoding interstitial collagens and basement membrane zone components

PMCID: PMC2115387  PMID: 2921281

Abstract

Perineurial cell cultures were established from the sciatic nerves of adult Wistar rats. Highly enriched cultures were studied with respect to the production of extracellular matrix components under conditions free from the influence of Schwann cells, axons, or the extracellular matrix of peripheral nerves. Indirect immunofluorescence staining revealed the presence of collagen type IV epitopes, and electron microscopy demonstrated patches of basement membrane on the perineurial cell surfaces. Collagenous fibrils with a diameter of 15-20 nm were also observed in the intracellular space. SDS-PAGE of radiolabeled medium proteins showed a pattern of bands suggesting the synthesis and secretion of fibronectin, and type I and IV collagens. Northern hybridizations revealed characteristic polymorphic mRNA transcripts corresponding to fibronectin, laminin B2 chain, as well as to the alpha- chain subunits of type I, III, and IV collagens. Furthermore, in situ hybridizations suggested expression of these genes by cultured perineurial cells without apparent heterogeneity within the cell populations. In situ hybridizations of sciatic nerve tissue from 2-wk- old rats also suggested that perineurial cells express alpha 1(I) and alpha 2(IV) collagen, as well as laminin B2 chain genes in vivo. This profile of matrix gene expression is different from that of Schwann cells, which do not synthesize fibronectin, or that of fibroblastic cells, which do not form a cell surface basement membrane. The capability of perineurial cells to express genes for the basement membrane zone and for interstitial collagens further adds to our understanding of the functional role of perineurial cells in developing and healing peripheral nerve, as well as in certain neoplastic lesions of neural origin, such as von Recklinghausen's neurofibromas.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow D. P., Green N. M., Kurkinen M., Hogan B. L. Sequencing of laminin B chain cDNAs reveals C-terminal regions of coiled-coil alpha-helix. EMBO J. 1984 Oct;3(10):2355–2362. doi: 10.1002/j.1460-2075.1984.tb02140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bignami A., Chi N. H., Dahl D. Laminin in rat sciatic nerve undergoing Wallerian degeneration. Immunofluorescence study with laminin and neurofilament antisera. J Neuropathol Exp Neurol. 1984 Jan;43(1):94–103. doi: 10.1097/00005072-198401000-00008. [DOI] [PubMed] [Google Scholar]
  3. Boot-Handford R. P., Kurkinen M., Prockop D. J. Steady-state levels of mRNAs coding for the type IV collagen and laminin polypeptide chains of basement membranes exhibit marked tissue-specific stoichiometric variations in the rat. J Biol Chem. 1987 Sep 15;262(26):12475–12478. [PubMed] [Google Scholar]
  4. Brahic M., Haase A. T. Detection of viral sequences of low reiteration frequency by in situ hybridization. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6125–6129. doi: 10.1073/pnas.75.12.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bunge M. B., Bunge R. P. Linkage between Schwann cell extracellular matrix production and ensheathment function. Ann N Y Acad Sci. 1986;486:241–247. doi: 10.1111/j.1749-6632.1986.tb48077.x. [DOI] [PubMed] [Google Scholar]
  6. Bunge M. B., Williams A. K., Wood P. M., Uitto J., Jeffrey J. J. Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation. J Cell Biol. 1980 Jan;84(1):184–202. doi: 10.1083/jcb.84.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carey D. J., Eldridge C. F., Cornbrooks C. J., Timpl R., Bunge R. P. Biosynthesis of type IV collagen by cultured rat Schwann cells. J Cell Biol. 1983 Aug;97(2):473–479. doi: 10.1083/jcb.97.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Cornbrooks C. J., Carey D. J., McDonald J. A., Timpl R., Bunge R. P. In vivo and in vitro observations on laminin production by Schwann cells. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3850–3854. doi: 10.1073/pnas.80.12.3850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eather T. F., Pollock M., Myers D. B. Proximal and distal changes in collagen content of peripheral nerve that follow transection and crush lesions. Exp Neurol. 1986 May;92(2):299–310. doi: 10.1016/0014-4886(86)90082-8. [DOI] [PubMed] [Google Scholar]
  11. GAMBLE H. J. COMPARATIVE ELECTRON-MICROSCOPIC OBSERVATIONS ON THE CONNECTIVE TISSUES OF A PERIPHERAL NERVE AND A SPINAL NERVE ROOT IN THE RAT. J Anat. 1964 Jan;98:17–26. [PMC free article] [PubMed] [Google Scholar]
  12. GAMBLE H. J., EAMES R. A. AN ELECTRON MICROSCOPE STUDY OF THE CONNECTIVE TISSUES OF HUMAN PERIPHERAL NERVE. J Anat. 1964 Oct;98:655–663. [PMC free article] [PubMed] [Google Scholar]
  13. Gamble H. J., Breathnach A. S. An electron-microscope study of human foetal peripheral nerves. J Anat. 1965 Jul;99(Pt 3):573–584. [PMC free article] [PubMed] [Google Scholar]
  14. Genovese C., Rowe D., Kream B. Construction of DNA sequences complementary to rat alpha 1 and alpha 2 collagen mRNA and their use in studying the regulation of type I collagen synthesis by 1,25-dihydroxyvitamin D. Biochemistry. 1984 Dec 4;23(25):6210–6216. doi: 10.1021/bi00320a049. [DOI] [PubMed] [Google Scholar]
  15. Hayashi M., Ninomiya Y., Parsons J., Hayashi K., Olsen B. R., Trelstad R. L. Differential localization of mRNAs of collagen types I and II in chick fibroblasts, chondrocytes, and corneal cells by in situ hybridization using cDNA probes. J Cell Biol. 1986 Jun;102(6):2302–2309. doi: 10.1083/jcb.102.6.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson P. C., Brendel K., Meezan E. Human diabetic perineurial cell basement membrane thickening. Lab Invest. 1981 Mar;44(3):265–270. [PubMed] [Google Scholar]
  17. Johnson P. C., Doll S. C., Cromey D. W. Pathogenesis of diabetic neuropathy. Ann Neurol. 1986 May;19(5):450–457. doi: 10.1002/ana.410190505. [DOI] [PubMed] [Google Scholar]
  18. Johnson P. C. Thickening of the human dorsal root ganglion perineurial cell basement membrane in diabetes mellitus. Muscle Nerve. 1983 Oct;6(8):561–565. doi: 10.1002/mus.880060805. [DOI] [PubMed] [Google Scholar]
  19. Jurecka W., Ammerer H. P., Lassmann H. Regeneration of a transected peripheral nerve. An autoradiographic and electron microscopic study. Acta Neuropathol. 1975 Oct 1;32(4):299–312. doi: 10.1007/BF00696792. [DOI] [PubMed] [Google Scholar]
  20. Juva K., Prockop D. J. Modified procedure for the assay of H-3-or C-14-labeled hydroxyproline. Anal Biochem. 1966 Apr;15(1):77–83. doi: 10.1016/0003-2697(66)90249-1. [DOI] [PubMed] [Google Scholar]
  21. Klemm H. Das Perineurium als Diffusionsbarriere gegenüber Peroxydase bei epi- und endoneuraler Applikation. Z Zellforsch Mikrosk Anat. 1970;108(3):431–445. [PubMed] [Google Scholar]
  22. Kurkinen M., Bernard M. P., Barlow D. P., Chow L. T. Characterization of 64-, 123- and 182-base-pair exons in the mouse alpha 2(IV) collagen gene. Nature. 1985 Sep 12;317(6033):177–179. doi: 10.1038/317177a0. [DOI] [PubMed] [Google Scholar]
  23. Kurkinen M., Condon M. R., Blumberg B., Barlow D. P., Quinones S., Saus J., Pihlajaniemi T. Extensive homology between the carboxyl-terminal peptides of mouse alpha 1(IV) and alpha 2(IV) collagen. J Biol Chem. 1987 Jun 25;262(18):8496–8499. [PubMed] [Google Scholar]
  24. Lassmann H., Jurecka W., Lassmann G., Gebhart W., Matras H., Watzek G. Different types of benign nerve sheath tumors. Light microscopy, electron microscopy and autoradiography. Virchows Arch A Pathol Anat Histol. 1977 Sep 28;375(3):197–210. doi: 10.1007/BF01102988. [DOI] [PubMed] [Google Scholar]
  25. Martinez-Hernandez A., Amenta P. S. The basement membrane in pathology. Lab Invest. 1983 Jun;48(6):656–677. [PubMed] [Google Scholar]
  26. Morris J. H., Hudson A. R., Weddell G. A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. IV. Changes in fascicular microtopography, perineurium and endoneurial fibroblasts. Z Zellforsch Mikrosk Anat. 1972;124(2):165–203. doi: 10.1007/BF00335678. [DOI] [PubMed] [Google Scholar]
  27. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  28. Ohara S., Takahashi H., Ikuta F. Ultrastructural alterations of perineurial cells in the early stage of Wallerian degeneration. Lab Invest. 1986 Feb;54(2):213–221. [PubMed] [Google Scholar]
  29. Paetau A., Mellström K., Vaheri A., Haltia M. Distribution of a major connective tissue protein, fibronectin, in normal and neoplastic human nervous tissue. Acta Neuropathol. 1980;51(1):47–51. doi: 10.1007/BF00688849. [DOI] [PubMed] [Google Scholar]
  30. Peltonen J., Foidart J. M., Aho H. J. Type IV and V collagens in von Recklinghausen's neurofibromas. An immunohistochemical and electrophoretical study. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;47(4):291–301. doi: 10.1007/BF02890212. [DOI] [PubMed] [Google Scholar]
  31. Peltonen J., Jaakkola S., Lebwohl M., Renvall S., Risteli L., Virtanen I., Uitto J. Cellular differentiation and expression of matrix genes in type 1 neurofibromatosis. Lab Invest. 1988 Dec;59(6):760–771. [PubMed] [Google Scholar]
  32. Peltonen J., Jaakkola S., Virtanen I., Pelliniemi L. Perineurial cells in culture. An immunocytochemical and electron microscopic study. Lab Invest. 1987 Nov;57(5):480–488. [PubMed] [Google Scholar]
  33. Peltonen J., Penttinen R., Larjava H., Aho H. J. Collagens in neurofibromas and neurofibroma cell cultures. Ann N Y Acad Sci. 1986;486:260–270. doi: 10.1111/j.1749-6632.1986.tb48079.x. [DOI] [PubMed] [Google Scholar]
  34. Radek A., Thomas P. K., King R. H. Perineurial differentiation in interchange grafts of rat peripheral nerve and spinal root. J Anat. 1986 Aug;147:207–217. [PMC free article] [PubMed] [Google Scholar]
  35. Risteli J., Bächinger H. P., Engel J., Furthmayr H., Timpl R. 7-S collagen: characterization of an unusual basement membrane structure. Eur J Biochem. 1980;108(1):239–250. doi: 10.1111/j.1432-1033.1980.tb04717.x. [DOI] [PubMed] [Google Scholar]
  36. Salonen V., Lehto M., Vaheri A., Aro H., Peltonen J. Endoneurial fibrosis following nerve transection. An immunohistological study of collagen types and fibronectin in the rat. Acta Neuropathol. 1985;67(3-4):315–321. doi: 10.1007/BF00687818. [DOI] [PubMed] [Google Scholar]
  37. Salonen V., Peltonen J., Röyttä M., Virtanen I. Laminin in traumatized peripheral nerve: basement membrane changes during degeneration and regeneration. J Neurocytol. 1987 Oct;16(5):713–720. doi: 10.1007/BF01637662. [DOI] [PubMed] [Google Scholar]
  38. Salonen V., Röyttä M., Peltonen J. The effects of nerve transection on the endoneurial collagen fibril sheaths. Acta Neuropathol. 1987;74(1):13–21. doi: 10.1007/BF00688333. [DOI] [PubMed] [Google Scholar]
  39. Schwarzbauer J. E., Patel R. S., Fonda D., Hynes R. O. Multiple sites of alternative splicing of the rat fibronectin gene transcript. EMBO J. 1987 Sep;6(9):2573–2580. doi: 10.1002/j.1460-2075.1987.tb02547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwarzbauer J. E., Tamkun J. W., Lemischka I. R., Hynes R. O. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell. 1983 Dec;35(2 Pt 1):421–431. doi: 10.1016/0092-8674(83)90175-7. [DOI] [PubMed] [Google Scholar]
  41. Seneviratne K. N. Permeability of blood nerve barriers in the diabetic rat. J Neurol Neurosurg Psychiatry. 1972 Apr;35(2):156–162. doi: 10.1136/jnnp.35.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. THOMAS P. K. The connective tissue of peripheral nerve: an electron microscope study. J Anat. 1963 Jan;97:35–44. [PMC free article] [PubMed] [Google Scholar]
  43. Thomas P. K., Bhagat S. The effect of extraction of the intrafascicular contents of peripheral nerve trunks on perineurial structure. Acta Neuropathol. 1978 Aug 7;43(1-2):135–141. doi: 10.1007/BF00685008. [DOI] [PubMed] [Google Scholar]
  44. Thomas P. K., Jones D. G. The cellular response to nerve injury. II. Regeneration of the perineurium after nerve section. J Anat. 1967 Jan;101(Pt 1):45–55. [PMC free article] [PubMed] [Google Scholar]
  45. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Timpl R., Wiedemann H., van Delden V., Furthmayr H., Kühn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981 Nov;120(2):203–211. doi: 10.1111/j.1432-1033.1981.tb05690.x. [DOI] [PubMed] [Google Scholar]
  47. Uitto J., Matsuoka L. Y., Chu M. L., Pihlajaniemi T., Prockop D. J. Connective tissue biochemistry of neurofibromas. Ann N Y Acad Sci. 1986;486:271–286. doi: 10.1111/j.1749-6632.1986.tb48080.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES