Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Mar 1;108(3):1025–1037. doi: 10.1083/jcb.108.3.1025

Localization of nicotinic acetylcholine receptor alpha-subunit transcripts during myogenesis and motor endplate development in the chick

PMCID: PMC2115389  PMID: 2921278

Abstract

In 15-d-old chick latissimi dorsi muscles, the nicotinic acetylcholine receptor (AChR) alpha-subunit mRNA is densely accumulated at the level of subsynaptic nuclei of the motor endplate (Fontaine et al., 1988). In this paper, using in situ hybridization with genomic probes, we further show that the expression of the AChR alpha-subunit gene in the embryo, revealed by the accumulation of mature mRNAs, starts in myotomal cells and persists during the first stages of muscle development in a majority of muscle nuclei. Subsequently, the distribution of AChR alpha- subunit mRNAs becomes restricted to the newly formed motor endplates as neuromuscular junctions develop. To assess the transcriptional activity of individual nuclei in developing muscles, a strictly intronic fragment of the AChR alpha-subunit gene was used to probe in situ the level of unspliced transcripts. AChR alpha-subunit unspliced transcripts accumulate around a large number of sarcoplasmic nuclei at embryonic day 11, but can no longer be detected at their level after embryonic day 16 in the embryo. A similar decrease in the accumulation of AChR alpha-subunit transcripts is observed between day 4 and day 6 in primary cultures of muscle cells. On the other hand, in vivo denervation and in vitro blocking of muscle electrical activity by the sodium channel blocker tetrodotoxin results in an increase in the labeling of muscle nuclei. Yet, only 6% of the muscle nuclei appear labeled by the strictly intronic probes after denervation. The possible significance of such heterogeneity of muscle nuclei during motor endplate formation in AChR gene expression is discussed.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin T. J., Yoshihara C. M., Blackmer K., Kintner C. R., Burden S. J. Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis. J Cell Biol. 1988 Feb;106(2):469–478. doi: 10.1083/jcb.106.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballivet M., Nef P., Stalder R., Fulpius B. Genomic sequences encoding the alpha-subunit of acetylcholine receptor are conserved in evolution. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 1):83–87. doi: 10.1101/sqb.1983.048.01.011. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. R. Development of neuromuscular synapses. Physiol Rev. 1983 Jul;63(3):915–1048. doi: 10.1152/physrev.1983.63.3.915. [DOI] [PubMed] [Google Scholar]
  4. Bennett M. R., Pettigrew A. G. The formation of synapses in striated muscle during development. J Physiol. 1974 Sep;241(2):515–545. doi: 10.1113/jphysiol.1974.sp010670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Betz H., Bourgeois J. P., Changeux J. P. Evidnece for degradation of the acetylcholine (nicotinic) receptor in skeletal muscle during the development of the chick embryo. FEBS Lett. 1977 May 15;77(2):219–224. doi: 10.1016/0014-5793(77)80238-x. [DOI] [PubMed] [Google Scholar]
  6. Betz H., Bourgeois J. P., Changeux J. P. Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. J Physiol. 1980 May;302:197–218. doi: 10.1113/jphysiol.1980.sp013238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Betz H., Changeux J. P. Regulation of muscle acetylcholine receptor synthesis in vitro by cyclic nucleotide derivatives. Nature. 1979 Apr 19;278(5706):749–752. doi: 10.1038/278749a0. [DOI] [PubMed] [Google Scholar]
  8. Blau H. M., Pavlath G. K., Hardeman E. C., Chiu C. P., Silberstein L., Webster S. G., Miller S. C., Webster C. Plasticity of the differentiated state. Science. 1985 Nov 15;230(4727):758–766. doi: 10.1126/science.2414846. [DOI] [PubMed] [Google Scholar]
  9. Boulter J., Luyten W., Evans K., Mason P., Ballivet M., Goldman D., Stengelin S., Martin G., Heinemann S., Patrick J. Isolation of a clone coding for the alpha-subunit of a mouse acetylcholine receptor. J Neurosci. 1985 Sep;5(9):2545–2552. doi: 10.1523/JNEUROSCI.05-09-02545.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bourgeois J. P., Betz H., Changuex J. P. Effets de la paralysie chronique de l'embryon de poulet par le flaxédil sur le développement de la jonction neuro-musculaire. C R Acad Sci Hebd Seances Acad Sci D. 1978 Mar 13;286(10):773–776. [PubMed] [Google Scholar]
  11. Buckley P. A., Konigsberg I. R. Do myoblasts in vivo withdraw from the cell cycle? A reexamination. Proc Natl Acad Sci U S A. 1977 May;74(5):2031–2035. doi: 10.1073/pnas.74.5.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Buonanno A., Merlie J. P. Transcriptional regulation of nicotinic acetylcholine receptor genes during muscle development. J Biol Chem. 1986 Sep 5;261(25):11452–11455. [PubMed] [Google Scholar]
  13. Burden S. Acetylcholine receptors at the neuromuscular junction: developmental change in receptor turnover. Dev Biol. 1977 Nov;61(1):79–85. doi: 10.1016/0012-1606(77)90343-8. [DOI] [PubMed] [Google Scholar]
  14. Burden S. Development of the neuromuscular junction in the chick embryo: the number, distribution, and stability of acetylcholine receptors. Dev Biol. 1977 Jun;57(2):317–329. doi: 10.1016/0012-1606(77)90218-4. [DOI] [PubMed] [Google Scholar]
  15. Chevallier A., Kieny M., Mauger A. Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol. 1977 Oct;41:245–258. [PubMed] [Google Scholar]
  16. Christ B., Jacob H. J., Jacob M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol (Berl) 1977 Mar 30;150(2):171–186. doi: 10.1007/BF00316649. [DOI] [PubMed] [Google Scholar]
  17. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  18. Entwistle A., Zalin R. J., Warner A. E., Bevan S. A role for acetylcholine receptors in the fusion of chick myoblasts. J Cell Biol. 1988 May;106(5):1703–1712. doi: 10.1083/jcb.106.5.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Evans S., Goldman D., Heinemann S., Patrick J. Muscle acetylcholine receptor biosynthesis. Regulation by transcript availability. J Biol Chem. 1987 Apr 5;262(10):4911–4916. [PMC free article] [PubMed] [Google Scholar]
  20. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  21. Fontaine B., Klarsfeld A., Changeux J. P. Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor alpha-subunit mRNA levels by distinct intracellular pathways. J Cell Biol. 1987 Sep;105(3):1337–1342. doi: 10.1083/jcb.105.3.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fontaine B., Klarsfeld A., Hökfelt T., Changeux J. P. Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci Lett. 1986 Oct 30;71(1):59–65. doi: 10.1016/0304-3940(86)90257-0. [DOI] [PubMed] [Google Scholar]
  23. Fontaine B., Sassoon D., Buckingham M., Changeux J. P. Detection of the nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J. 1988 Mar;7(3):603–609. doi: 10.1002/j.1460-2075.1988.tb02853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fremeau R. T., Jr, Lundblad J. R., Pritchett D. B., Wilcox J. N., Roberts J. L. Regulation of pro-opiomelanocortin gene transcription in individual cell nuclei. Science. 1986 Dec 5;234(4781):1265–1269. doi: 10.1126/science.3775385. [DOI] [PubMed] [Google Scholar]
  25. GINSBORG B. L. Some properties of avian skeletal muscle fibres with multiple neuromuscular junctions. J Physiol. 1960 Dec;154:581–598. doi: 10.1113/jphysiol.1960.sp006597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Goldman D., Boulter J., Heinemann S., Patrick J. Muscle denervation increases the levels of two mRNAs coding for the acetylcholine receptor alpha-subunit. J Neurosci. 1985 Sep;5(9):2553–2558. doi: 10.1523/JNEUROSCI.05-09-02553.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. HOLTZER H., MARSHALL J. M., Jr, FINCK H. An analysis of myogenesis by the use of fluorescent antimyosin. J Biophys Biochem Cytol. 1957 Sep 25;3(5):705–724. doi: 10.1083/jcb.3.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Harris D. A., Falls D. L., Dill-Devor R. M., Fischbach G. D. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor alpha subunit. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1983–1987. doi: 10.1073/pnas.85.6.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  30. Jacob M., Christ B., Jacob H. J. On the migration of myogenic stem cells into the prospective wing region of chick embryos. A scanning and transmission electron microscope study. Anat Embryol (Berl) 1978 Jun 2;153(2):179–193. doi: 10.1007/BF00343373. [DOI] [PubMed] [Google Scholar]
  31. Janners M. Y., Searls R. L. Changes in rate of cellular proliferation during the differentiation of cartilage and muscle in the mesenchyme of the embryonic chick wing. Dev Biol. 1970 Sep;23(1):136–165. doi: 10.1016/s0012-1606(70)80011-2. [DOI] [PubMed] [Google Scholar]
  32. KOELLE G. B., FRIEDENWALD J. A. A histochemical method for localizing cholinesterase activity. Proc Soc Exp Biol Med. 1949 Apr;70(4):617–622. doi: 10.3181/00379727-70-17013. [DOI] [PubMed] [Google Scholar]
  33. Klarsfeld A., Changeux J. P. Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4558–4562. doi: 10.1073/pnas.82.13.4558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. LaPolla R. J., Mayne K. M., Davidson N. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7970–7974. doi: 10.1073/pnas.81.24.7970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Leys E. J., Crouse G. F., Kellems R. E. Dihydrofolate reductase gene expression in cultured mouse cells is regulated by transcript stabilization in the nucleus. J Cell Biol. 1984 Jul;99(1 Pt 1):180–187. doi: 10.1083/jcb.99.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lindstrom J., Schoepfer R., Whiting P. Molecular studies of the neuronal nicotinic acetylcholine receptor family. Mol Neurobiol. 1987 Winter;1(4):281–337. doi: 10.1007/BF02935740. [DOI] [PubMed] [Google Scholar]
  37. Marchok A. C., Herrmann H. Studies of muscle development. I. Changes in cell proliferation. Dev Biol. 1967 Feb;15(2):129–155. doi: 10.1016/0012-1606(67)90010-3. [DOI] [PubMed] [Google Scholar]
  38. Meiniel R., Bourgeois J. P. Appearance and distribution "in situ" of nicotinic acetylcholine receptors in cervical myotomes of young chick embryos. Radioautographic studies by light and electron microscopy. Anat Embryol (Berl) 1982;164(3):349–368. doi: 10.1007/BF00315757. [DOI] [PubMed] [Google Scholar]
  39. Merlie J. P., Isenberg K. E., Russell S. D., Sanes J. R. Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J Cell Biol. 1984 Jul;99(1 Pt 1):332–335. doi: 10.1083/jcb.99.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Moss S. J., Beeson D. M., Jackson J. F., Darlison M. G., Barnard E. A. Differential expression of nicotinic acetylcholine receptor genes in innervated and denervated chicken muscle. EMBO J. 1987 Dec 20;6(13):3917–3921. doi: 10.1002/j.1460-2075.1987.tb02732.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Narayan P., Towle H. C. Stabilization of a specific nuclear mRNA precursor by thyroid hormone. Mol Cell Biol. 1985 Oct;5(10):2642–2646. doi: 10.1128/mcb.5.10.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nef P., Mauron A., Stalder R., Alliod C., Ballivet M. Structure linkage, and sequence of the two genes encoding the delta and gamma subunits of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7975–7979. doi: 10.1073/pnas.81.24.7975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. New H. V., Mudge A. W. Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. 1986 Oct 30-Nov 5Nature. 323(6091):809–811. doi: 10.1038/323809a0. [DOI] [PubMed] [Google Scholar]
  44. Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. 1983 Oct 27-Nov 2Nature. 305(5937):818–823. doi: 10.1038/305818a0. [DOI] [PubMed] [Google Scholar]
  45. Pestronk A. Intracellular acetylcholine receptors in skeletal muscles of the adult rat. J Neurosci. 1985 May;5(5):1111–1117. doi: 10.1523/JNEUROSCI.05-05-01111.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pinney D. F., Pearson-White S. H., Konieczny S. F., Latham K. E., Emerson C. P., Jr Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell. 1988 Jun 3;53(5):781–793. doi: 10.1016/0092-8674(88)90095-5. [DOI] [PubMed] [Google Scholar]
  47. Salpeter M. M., Loring R. H. Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neural control. Prog Neurobiol. 1985;25(4):297–325. doi: 10.1016/0301-0082(85)90018-8. [DOI] [PubMed] [Google Scholar]
  48. Salviati G., Biasia E., Aloisi M. Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region. Nature. 1986 Aug 14;322(6080):637–639. doi: 10.1038/322637a0. [DOI] [PubMed] [Google Scholar]
  49. Sassoon D. A., Garner I., Buckingham M. Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development. 1988 Sep;104(1):155–164. doi: 10.1242/dev.104.1.155. [DOI] [PubMed] [Google Scholar]
  50. Schwartz R. J., Rothblum K. N. Gene switching in myogenesis: differential expression of the chicken actin multigene family. Biochemistry. 1981 Jul 7;20(14):4122–4129. doi: 10.1021/bi00517a027. [DOI] [PubMed] [Google Scholar]
  51. Shainberg A., Cohen S. A., Nelson P. G. Induction of acetylcholine receptors in muscle cultures. Pflugers Arch. 1976 Feb 24;361(3):255–261. doi: 10.1007/BF00587290. [DOI] [PubMed] [Google Scholar]
  52. Shieh B. H., Ballivet M., Schmidt J. Acetylcholine receptor synthesis rate and levels of receptor subunit messenger RNAs in chick muscle. Neuroscience. 1988 Jan;24(1):175–187. doi: 10.1016/0306-4522(88)90321-1. [DOI] [PubMed] [Google Scholar]
  53. Shieh B. H., Ballivet M., Schmidt J. Quantitation of an alpha subunit splicing intermediate: evidence for transcriptional activation in the control of acetylcholine receptor expression in denervated chick skeletal muscle. J Cell Biol. 1987 May;104(5):1337–1341. doi: 10.1083/jcb.104.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Smilowitz H., Fischbach G. D. Acetylcholine receptors on chick mononucleated muscle precursor cells. Dev Biol. 1978 Oct;66(2):539–549. doi: 10.1016/0012-1606(78)90258-0. [DOI] [PubMed] [Google Scholar]
  55. Teng N. N., Fiszman M. Y. Appearance of acetylcholine receptors in cultured myoblasts prior to fusion. J Supramol Struct. 1976;4(3):381–387. doi: 10.1002/jss.400040309. [DOI] [PubMed] [Google Scholar]
  56. Wilkinson D. G., Bailes J. A., Champion J. E., McMahon A. P. A molecular analysis of mouse development from 8 to 10 days post coitum detects changes only in embryonic globin expression. Development. 1987 Apr;99(4):493–500. doi: 10.1242/dev.99.4.493. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES