Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Feb 1;108(2):389–400. doi: 10.1083/jcb.108.2.389

Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation

PMCID: PMC2115439  PMID: 2563728

Abstract

Two seemingly unrelated experimental treatments inhibit receptor mediated endocytosis: (a) depletion of intracellular K+ (Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson. 1983. Cell. 33:273- 285); and (b) treatment with hypertonic media (Daukas, G., and S. H. Zigmond. 1985. J. Cell Biol. 101:1673-1679). Since the former inhibits the formation of clathrin-coated pits (Larkin, J. M., W. D. Donzell, and R. G. W. Anderson, 1986. J. Cell Biol. 103:2619-2627), we were interested in determining whether hypertonic treatment has the same effect, and if so, why. Fibroblasts (human or chicken) were incubated in normal saline made hypertonic with 0.45 M sucrose, then broken open by sonication and freeze-etched to generate replicas of their inner membrane surfaces. Whereas untreated cells display typical geodesic lattices of clathrin under each coated pit, hypertonic cells display in addition a number of empty clathrin "microcages". At first, these appear around the edges of normal coated pit lattices. With further time in hypertonic medium, however, normal lattices largely disappear and are replaced by accumulations of microcages. Concomitantly, low density lipoprotein (LDL) receptors lose their normal clustered distribution and become dispersed all over the cell surface, as seen by fluorescence microscopy and freeze-etch electron microscopy of LDL attached to the cell surface. Upon return to normal medium at 37 degrees C, these changes promptly reverse. Within 2 min, small clusters of LDL reappear on the surfaces of cells and normal clathrin lattices begin to reappear inside; the size and number of these receptor/clathrin complexes returns to normal over the next 10 min. Thus, in spite of their seeming unrelatedness, both K+ depletion and hypertonic treatment cause coated pits to disappear, and both induce abnormal clathrin polymerization into empty microcages. This suggests that in both cases, an abnormal formation of microcages inhibits endocytosis by rendering clathrin unavailable for assembly into normal coated pits.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggeler J., Werb Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J Cell Biol. 1982 Sep;94(3):613–623. doi: 10.1083/jcb.94.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G., Goldstein J. L., Brown M. S. Fluorescence visualization of receptor-bound low density lipoprotein in human fibroblasts. J Recept Res. 1980;1(1):17–39. doi: 10.3109/10799898009039253. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. G., Vasile E., Mello R. J., Brown M. S., Goldstein J. L. Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell. 1978 Nov;15(3):919–933. doi: 10.1016/0092-8674(78)90276-3. [DOI] [PubMed] [Google Scholar]
  4. Brodsky F. M. Clathrin structure characterized with monoclonal antibodies. II. Identification of in vivo forms of clathrin. J Cell Biol. 1985 Dec;101(6):2055–2062. doi: 10.1083/jcb.101.6.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crowther R. A., Finch J. T., Pearse B. M. On the structure of coated vesicles. J Mol Biol. 1976 Jun 5;103(4):785–798. doi: 10.1016/0022-2836(76)90209-6. [DOI] [PubMed] [Google Scholar]
  6. Daiss J. L., Roth T. F. Isolation of coated vesicles: comparative studies. Methods Enzymol. 1983;98:337–349. doi: 10.1016/0076-6879(83)98162-4. [DOI] [PubMed] [Google Scholar]
  7. Daukas G., Zigmond S. H. Inhibition of receptor-mediated but not fluid-phase endocytosis in polymorphonuclear leukocytes. J Cell Biol. 1985 Nov;101(5 Pt 1):1673–1679. doi: 10.1083/jcb.101.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davoust J., Gruenberg J., Howell K. E. Two threshold values of low pH block endocytosis at different stages. EMBO J. 1987 Dec 1;6(12):3601–3609. doi: 10.1002/j.1460-2075.1987.tb02691.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  10. Goodenough U., Heuser J. Structural comparison of purified dynein proteins with in situ dynein arms. J Mol Biol. 1984 Dec 25;180(4):1083–1118. doi: 10.1016/0022-2836(84)90272-9. [DOI] [PubMed] [Google Scholar]
  11. Goud B., Huet C., Louvard D. Assembled and unassembled pools of clathrin: a quantitative study using an enzyme immunoassay. J Cell Biol. 1985 Feb;100(2):521–527. doi: 10.1083/jcb.100.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heuser J. Effects of cytoplasmic acidification on clathrin lattice morphology. J Cell Biol. 1989 Feb;108(2):401–411. doi: 10.1083/jcb.108.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heuser J., Kirchhausen T. Deep-etch views of clathrin assemblies. J Ultrastruct Res. 1985 Jul-Aug;92(1-2):1–27. doi: 10.1016/0889-1605(85)90123-5. [DOI] [PubMed] [Google Scholar]
  17. Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ilondo M. M., Courtoy P. J., Geiger D., Carpentier J. L., Rousseau G. G., De Meyts P. Intracellular potassium depletion in IM-9 lymphocytes suppresses the slowly dissociating component of human growth hormone binding and the down-regulation of its receptors but does not affect insulin receptors. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6460–6464. doi: 10.1073/pnas.83.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keen J. H., Willingham M. C., Pastan I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell. 1979 Feb;16(2):303–312. doi: 10.1016/0092-8674(79)90007-2. [DOI] [PubMed] [Google Scholar]
  20. Larkin J. M., Brown M. S., Goldstein J. L., Anderson R. G. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 May;33(1):273–285. doi: 10.1016/0092-8674(83)90356-2. [DOI] [PubMed] [Google Scholar]
  21. Larkin J. M., Donzell W. C., Anderson R. G. Modulation of intracellular potassium and ATP: effects on coated pit function in fibroblasts and hepatocytes. J Cell Physiol. 1985 Sep;124(3):372–378. doi: 10.1002/jcp.1041240303. [DOI] [PubMed] [Google Scholar]
  22. Larkin J. M., Donzell W. C., Anderson R. G. Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J Cell Biol. 1986 Dec;103(6 Pt 2):2619–2627. doi: 10.1083/jcb.103.6.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Loeb J. A., Drickamer K. The chicken receptor for endocytosis of glycoproteins contains a cluster of N-acetylglucosamine-binding sites. J Biol Chem. 1987 Mar 5;262(7):3022–3029. [PubMed] [Google Scholar]
  24. Louvard D., Morris C., Warren G., Stanley K., Winkler F., Reggio H. A monoclonal antibody to the heavy chain of clathrin. EMBO J. 1983;2(10):1655–1664. doi: 10.1002/j.1460-2075.1983.tb01640.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Madshus I. H., Sandvig K., Olsnes S., van Deurs B. Effect of reduced endocytosis induced by hypotonic shock and potassium depletion on the infection of Hep 2 cells by picornaviruses. J Cell Physiol. 1987 Apr;131(1):14–22. doi: 10.1002/jcp.1041310104. [DOI] [PubMed] [Google Scholar]
  26. Madshus I. H., Tønnessen T. I., Olsnes S., Sandvig K. Effect of potassium depletion of Hep 2 cells on intracellular pH and on chloride uptake by anion antiport. J Cell Physiol. 1987 Apr;131(1):6–13. doi: 10.1002/jcp.1041310103. [DOI] [PubMed] [Google Scholar]
  27. Marsh M., Helenius A. Adsorptive endocytosis of Semliki Forest virus. J Mol Biol. 1980 Sep 25;142(3):439–454. doi: 10.1016/0022-2836(80)90281-8. [DOI] [PubMed] [Google Scholar]
  28. Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Merisko E. M., Fletcher M., Palade G. E. The reorganization of the Golgi complex in anoxic pancreatic acinar cells. Pancreas. 1986;1(2):95–109. doi: 10.1097/00006676-198603000-00001. [DOI] [PubMed] [Google Scholar]
  30. Moya M., Dautry-Varsat A., Goud B., Louvard D., Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol. 1985 Aug;101(2):548–559. doi: 10.1083/jcb.101.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nicol A., Nermut M. V. A new type of substratum adhesion structure in NRK cells revealed by correlated interference reflection and electron microscopy. Eur J Cell Biol. 1987 Jun;43(3):348–357. [PubMed] [Google Scholar]
  32. Pearse B. M. Coated vesicles from pig brain: purification and biochemical characterization. J Mol Biol. 1975 Sep 5;97(1):93–98. doi: 10.1016/s0022-2836(75)80024-6. [DOI] [PubMed] [Google Scholar]
  33. Pearse B. M., Crowther R. A. Structure and assembly of coated vesicles. Annu Rev Biophys Biophys Chem. 1987;16:49–68. doi: 10.1146/annurev.bb.16.060187.000405. [DOI] [PubMed] [Google Scholar]
  34. Raikhel A. S. Accumulations of membrane-free clathrin-like lattices in the mosquito oocyte. Eur J Cell Biol. 1984 Nov;35(2):279–283. [PubMed] [Google Scholar]
  35. Samuelson A. C., Stockert R. J., Novikoff A. B., Novikoff P. M., Saez J. C., Spray D. C., Wolkoff A. W. Influence of cytosolic pH on receptor-mediated endocytosis of asialoorosomucoid. Am J Physiol. 1988 Jun;254(6 Pt 1):C829–C838. doi: 10.1152/ajpcell.1988.254.6.C829. [DOI] [PubMed] [Google Scholar]
  36. Sandvig K., Olsnes S., Petersen O. W., van Deurs B. Acidification of the cytosol inhibits endocytosis from coated pits. J Cell Biol. 1987 Aug;105(2):679–689. doi: 10.1083/jcb.105.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sandvig K., Sundan A., Olsnes S. Effect of potassium depletion of cells on their sensitivity to diphtheria toxin and pseudomonas toxin. J Cell Physiol. 1985 Jul;124(1):54–60. doi: 10.1002/jcp.1041240110. [DOI] [PubMed] [Google Scholar]
  38. Van Jaarsveld P. P., Nandi P. K., Lippoldt R. E., Saroff H., Edelhoch H. Polymerization of clathrin protomers into basket structures. Biochemistry. 1981 Jul 7;20(14):4129–4135. doi: 10.1021/bi00517a028. [DOI] [PubMed] [Google Scholar]
  39. Vigers G. P., Crowther R. A., Pearse B. M. Location of the 100 kd-50 kd accessory proteins in clathrin coats. EMBO J. 1986 Sep;5(9):2079–2085. doi: 10.1002/j.1460-2075.1986.tb04469.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vigers G. P., Crowther R. A., Pearse B. M. Three-dimensional structure of clathrin cages in ice. EMBO J. 1986 Mar;5(3):529–534. doi: 10.1002/j.1460-2075.1986.tb04242.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Woodward M. P., Roth T. F. Influence of buffer ions and divalent cations on coated vesicle disassembly and reassembly. J Supramol Struct. 1979;11(2):237–250. doi: 10.1002/jss.400110213. [DOI] [PubMed] [Google Scholar]
  42. Zaremba S., Keen J. H. Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J Cell Biol. 1983 Nov;97(5 Pt 1):1339–1347. doi: 10.1083/jcb.97.5.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Driel I. R., Davis C. G., Goldstein J. L., Brown M. S. Self-association of the low density lipoprotein receptor mediated by the cytoplasmic domain. J Biol Chem. 1987 Nov 25;262(33):16127–16134. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES