Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Feb 1;108(2):511–520. doi: 10.1083/jcb.108.2.511

Effect of Ca2+ on the dimeric structure of scallop sarcoplasmic reticulum

PMCID: PMC2115448  PMID: 2521860

Abstract

Scallop sarcoplasmic reticulum (SR), visualized in situ by freeze- fracture and deep-etching, is characterized by long tubes displaying crystalline arrays of Ca2+-ATPase dimer ribbons, resembling those observed in isolated SR vesicles. The orderly arrangement of the Ca2+- ATPase molecules is well preserved in muscle bundles permeabilized with saponin. Treatment with saponin, however, is not needed to isolate SR vesicles displaying a crystalline surface structure. Omission of ATP from the isolation procedure of SR vesicles does not alter the dimeric organization of the Ca2+-ATPase, although the overall appearance of the tubes seems to be affected: the edges of the vesicles are scalloped and the individual Ca2+-ATPase molecules are not clearly defined. The effect of Ca2+ on isolated scallop SR vesicles was investigated by correlating the enzymatic activity and calcium-binding properties of the Ca2+-ATPase with the surface structure of the vesicles, as revealed by electron microscopy. The dimeric organization of the membrane is preserved at Ca2+ concentrations where the Ca2+ binds to the high affinity sites (half-maximum saturation at pCa approximately 7.0 with a Hill coefficient of 2.1) and the Ca2+-ATPase is activated (half-maximum activation at pCa approximately 6.8 with a Hill coefficient of 1.84). Higher Ca2+ concentrations disrupt the crystalline surface array of the SR tubes, both in the presence and absence of ATP. We discuss here whether the Ca2+-ATPase dimer identified as a structural unit of the SR membrane represents the Ca2+ pump in the membrane.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P., Lassen K., Møller J. V. Changes in Ca2+ affinity related to conformational transitions in the phosphorylated state of soluble monomeric Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1985 Jan 10;260(1):371–380. [PubMed] [Google Scholar]
  2. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  3. Buhle E. L., Jr, Knox B. E., Serpersu E., Aebi U. The structure of the Ca2+ ATPase as revealed by electron microscopy and image processing of ordered arrays. J Ultrastruct Res. 1983 Nov;85(2):186–203. doi: 10.1016/s0022-5320(83)90106-5. [DOI] [PubMed] [Google Scholar]
  4. Castellani L., Hardwicke P. M. Crystalline structure of sarcoplasmic reticulum from scallop. J Cell Biol. 1983 Aug;97(2):557–561. doi: 10.1083/jcb.97.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castellani L., Hardwicke P. M., Vibert P. Dimer ribbons in the three-dimensional structure of sarcoplasmic reticulum. J Mol Biol. 1985 Oct 5;185(3):579–594. doi: 10.1016/0022-2836(85)90073-7. [DOI] [PubMed] [Google Scholar]
  6. Chamberlain B. K., Berenski C. J., Jung C. Y., Fleischer S. Determination of the oligomeric structure of the Ca2+ pump protein in canine cardiac sarcoplasmic reticulum membranes using radiation inactivation analysis. J Biol Chem. 1983 Oct 10;258(19):11997–12001. [PubMed] [Google Scholar]
  7. Chantler P. D., Szent-Györgyi A. G. Regulatory light-chains and scallop myosin. Full dissociation, reversibility and co-operative effects. J Mol Biol. 1980 Apr 15;138(3):473–492. doi: 10.1016/s0022-2836(80)80013-1. [DOI] [PubMed] [Google Scholar]
  8. Dux L., Martonosi A. The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. I. The effects of Ca2+, ATP, and inorganic phosphate. J Biol Chem. 1983 Oct 10;258(19):11896–11902. [PubMed] [Google Scholar]
  9. Dux L., Martonosi A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem. 1983 Feb 25;258(4):2599–2603. [PubMed] [Google Scholar]
  10. Dux L., Pikula S., Mullner N., Martonosi A. Crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1987 May 15;262(14):6439–6442. [PubMed] [Google Scholar]
  11. Dux L., Taylor K. A., Ting-Beall H. P., Martonosi A. Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions. J Biol Chem. 1985 Sep 25;260(21):11730–11743. [PubMed] [Google Scholar]
  12. Endo M., Iino M. Specific perforation of muscle cell membranes with preserved SR functions by saponin treatment. J Muscle Res Cell Motil. 1980 Mar;1(1):89–100. doi: 10.1007/BF00711927. [DOI] [PubMed] [Google Scholar]
  13. Feigenson G. W. On the nature of calcium ion binding between phosphatidylserine lamellae. Biochemistry. 1986 Sep 23;25(19):5819–5825. doi: 10.1021/bi00367a071. [DOI] [PubMed] [Google Scholar]
  14. Ferguson D. G., Franzini-Armstrong C., Castellani L., Hardwicke P. M., Kenney L. J. Ordered arrays of Ca2+-ATPase on the cytoplasmic surface of isolated sarcoplasmic reticulum. Biophys J. 1985 Oct;48(4):597–605. doi: 10.1016/S0006-3495(85)83815-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franzini-Armstrong C., Ferguson D. G., Castellani L., Kenney L. The density and disposition of Ca-ATPase in in situ and isolated sarcoplasmic reticulum. Ann N Y Acad Sci. 1986;483:44–56. doi: 10.1111/j.1749-6632.1986.tb34495.x. [DOI] [PubMed] [Google Scholar]
  16. Franzini-Armstrong C., Ferguson D. G. Density and disposition of Ca2+-ATPase in sarcoplasmic reticulum membrane as determined by shadowing techniques. Biophys J. 1985 Oct;48(4):607–615. doi: 10.1016/S0006-3495(85)83816-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  18. Hasselbach W., Oetliker H. Energetics and electrogenicity of the sarcoplasmic reticulum calcium pump. Annu Rev Physiol. 1983;45:325–339. doi: 10.1146/annurev.ph.45.030183.001545. [DOI] [PubMed] [Google Scholar]
  19. Hauser H., Darke A., Phillips M. C. Ion-binding to phospholipids. Interaction of calcium with phosphatidylserine. Eur J Biochem. 1976 Feb 16;62(2):335–344. doi: 10.1111/j.1432-1033.1976.tb10165.x. [DOI] [PubMed] [Google Scholar]
  20. Hill T. L., Inesi G. Equilibrium cooperative binding of calcium and protons by sarcoplasmic reticulum ATPase. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3978–3982. doi: 10.1073/pnas.79.13.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Inesi G., Kurzmack M., Coan C., Lewis D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem. 1980 Apr 10;255(7):3025–3031. [PubMed] [Google Scholar]
  22. Inesi G. Mechanism of calcium transport. Annu Rev Physiol. 1985;47:573–601. doi: 10.1146/annurev.ph.47.030185.003041. [DOI] [PubMed] [Google Scholar]
  23. Jorge-Garcia I., Bigelow D. J., Inesi G., Wade J. B. Effect of urea on the partial reactions and crystallization pattern of sarcoplasmic reticulum adenosine triphosphatase. Arch Biochem Biophys. 1988 Aug 15;265(1):82–90. doi: 10.1016/0003-9861(88)90373-6. [DOI] [PubMed] [Google Scholar]
  24. Kalbitzer H. R., Stehlik D., Hasselbach W. The binding of calcium and magnesium to sarcoplasmic reticulum vesicles as studied by manganese electron paramagnetic resonance. Eur J Biochem. 1978 Jan 2;82(1):245–255. doi: 10.1111/j.1432-1033.1978.tb12017.x. [DOI] [PubMed] [Google Scholar]
  25. Martin D. W., Tanford C., Reynolds J. A. Monomeric solubilized sarcoplasmic reticulum Ca pump protein: demonstration of Ca binding and dissociation coupled to ATP hydrolysis. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6623–6626. doi: 10.1073/pnas.81.21.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Napolitano C. A., Cooke P., Segalman K., Herbette L. Organization of calcium pump protein dimers in the isolated sarcoplasmic reticulum membrane. Biophys J. 1983 May;42(2):119–125. doi: 10.1016/S0006-3495(83)84377-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nunzi M. G., Franzini Armstrong C. The structure of smooth and striated portions of the adductor muscle of the valves in a scallop. J Ultrastruct Res. 1981 Aug;76(2):134–148. doi: 10.1016/s0022-5320(81)80012-3. [DOI] [PubMed] [Google Scholar]
  28. Peracchia C., Dux L., Martonosi A. N. Crystallization of intramembrane particles in rabbit sarcoplasmic reticulum vesicles by vanadate. J Muscle Res Cell Motil. 1984 Aug;5(4):431–442. doi: 10.1007/BF00818261. [DOI] [PubMed] [Google Scholar]
  29. Pikula S., Mullner N., Dux L., Martonosi A. Stabilization and crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1988 Apr 15;263(11):5277–5286. [PubMed] [Google Scholar]
  30. Sanger J. W. Sarcoplasmic reticulum in the cross-striated adductor muscle of the bay scallop, Aequipecten irridians. Z Zellforsch Mikrosk Anat. 1971;118(2):156–161. doi: 10.1007/BF00341560. [DOI] [PubMed] [Google Scholar]
  31. Scales D., Giuseppeinesi Assembly of ATPase protein in sarcoplasmic reticulum membranes. Biophys J. 1976 Jul;16(7):735–751. doi: 10.1016/S0006-3495(76)85725-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scofano H., Barrabin H., Inesi G., Cohen J. A. Stoichiometric and electrostatic characterization of calcium binding to native and lipid-substituted adenosinetriphosphatase of sarcoplasmic reticulum. Biochim Biophys Acta. 1985 Sep 25;819(1):93–104. doi: 10.1016/0005-2736(85)90199-3. [DOI] [PubMed] [Google Scholar]
  33. Tanford C., Reynolds J. A., Johnson E. A. Sarcoplasmic reticulum calcium pump: a model for Ca2+ binding and Ca2+-coupled phosphorylation. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7094–7098. doi: 10.1073/pnas.84.20.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Taylor K. A., Dux L., Martonosi A. Three-dimensional reconstruction of negatively stained crystals of the Ca2+-ATPase from muscle sarcoplasmic reticulum. J Mol Biol. 1986 Feb 5;187(3):417–427. doi: 10.1016/0022-2836(86)90442-0. [DOI] [PubMed] [Google Scholar]
  35. Taylor K. A., Mullner N., Pikula S., Dux L., Peracchia C., Varga S., Martonosi A. Electron microscope observations on Ca2+-ATPase microcrystals in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1988 Apr 15;263(11):5287–5294. [PubMed] [Google Scholar]
  36. Taylor K., Dux L., Martonosi A. Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase. J Mol Biol. 1984 Mar 25;174(1):193–204. doi: 10.1016/0022-2836(84)90372-3. [DOI] [PubMed] [Google Scholar]
  37. Warren G. B., Toon P. A., Birdsall N. J., Lee A. G., Metcalfe J. C. Reconstitution of a calcium pump using defined membrane components. Proc Natl Acad Sci U S A. 1974 Mar;71(3):622–626. doi: 10.1073/pnas.71.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES