Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Oct;170(10):4954–4957. doi: 10.1128/jb.170.10.4954-4957.1988

31P nuclear magnetic resonance studies of effects of some chlorophenols on Escherichia coli and a pentachlorophenol-degrading bacterium.

J G Steiert 1, W J Thoma 1, K Ugurbil 1, R L Crawford 1
PMCID: PMC211545  PMID: 3049554

Abstract

A Flavobacterium sp. that mineralizes pentachlorophenol degrades some, but not all, of the other chlorinated phenols. Whole-cell 31P nuclear magnetic resonance was used to compare and observe transmembrane pH gradients and nucleotide pools in the Flavobacterium sp. and Escherichia coli after pentachlorophenol and 3,4,5-trichlorophenol were added to the cell suspensions. The data suggest that those chlorinated phenols which are not degraded by the Flavobacterium sp. may be resistant to degradation because they act as proton dissipators.

Full text

PDF
4954

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown T. R., Ugurbil K., Shulman R. G. 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5551–5553. doi: 10.1073/pnas.74.12.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chu J. P., Kirsch E. J. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol. 1972 May;23(5):1033–1035. doi: 10.1128/am.23.5.1033-1035.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Decker S. J., Lang D. R. Membrane bioenergetic parameters in uncoupler-resistant mutants of Bacillus megaterium. J Biol Chem. 1978 Oct 10;253(19):6738–6743. [PubMed] [Google Scholar]
  4. Decker S. J., Lang D. R. Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation. J Biol Chem. 1977 Sep 10;252(17):5936–5938. [PubMed] [Google Scholar]
  5. Hanstein W. G., Hatefi Y. Characterization and localization of mitochondrial uncoupler binding sites with an uncoupler capable of photoaffinity labeling. J Biol Chem. 1974 Mar 10;249(5):1356–1362. [PubMed] [Google Scholar]
  6. Hanstein W. G. Uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 1976 Sep 27;456(2):129–148. doi: 10.1016/0304-4173(76)90010-0. [DOI] [PubMed] [Google Scholar]
  7. Ito M., Ohnishi Y. Isolation of Escherichia coli mutants which are resistant to an inhibitor of H+-ATPase, tributyltin and also to uncouplers of oxidative phosphorylation. FEBS Lett. 1981 Dec 28;136(2):225–230. doi: 10.1016/0014-5793(81)80623-0. [DOI] [PubMed] [Google Scholar]
  8. Katre N. V., Wilson D. F. A specific uncoupler-binding protein in Tetrahymena pyriformis and Paracoccus denitrificans. Biochim Biophys Acta. 1980 Dec 3;593(2):224–229. doi: 10.1016/0005-2728(80)90060-2. [DOI] [PubMed] [Google Scholar]
  9. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  10. Navon G., Ogawa S., Shulman R. G., Yamane T. High-resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1977 Mar;74(3):888–891. doi: 10.1073/pnas.74.3.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ogawa S., Shulman R. G., Glynn P., Yamane T., Navon G. On the measurement of pH in Escherichia coli by 31P nuclear magnetic resonance. Biochim Biophys Acta. 1978 Apr 11;502(1):45–50. doi: 10.1016/0005-2728(78)90130-5. [DOI] [PubMed] [Google Scholar]
  12. Pignatello J. J., Martinson M. M., Steiert J. G., Carlson R. E., Crawford R. L. Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl Environ Microbiol. 1983 Nov;46(5):1024–1031. doi: 10.1128/aem.46.5.1024-1031.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol. 1985 Dec;50(6):1512–1518. doi: 10.1128/aem.50.6.1512-1518.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stanlake G. J., Finn R. K. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1982 Dec;44(6):1421–1427. doi: 10.1128/aem.44.6.1421-1427.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Steiert J. G., Pignatello J. J., Crawford R. L. Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1987 May;53(5):907–910. doi: 10.1128/aem.53.5.907-910.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thoma W. J., Steiert J. G., Crawford R. L., Uğurbil K. pH measurements by 31p NMR in bacterial suspensions using phenyl phosphonate as a probe. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1106–1109. doi: 10.1016/s0006-291x(86)80396-5. [DOI] [PubMed] [Google Scholar]
  17. Ugurbil K., Rottenberg H., Glynn P., Shulman R. G. 31P nuclear magnetic resonance studies of bioenergetics and glycolysis in anaerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2244–2248. doi: 10.1073/pnas.75.5.2244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ugurbil K., Rottenberg H., Glynn P., Shulman R. G. Phosphorus-31 nuclear magnetic resonance studies of bioenergetics in wild-type and adenosinetriphosphatase(1-) Escherichia coli cells. Biochemistry. 1982 Mar 2;21(5):1068–1075. doi: 10.1021/bi00534a038. [DOI] [PubMed] [Google Scholar]
  19. WEINBACH E. C. The effect of pentachlorophenol on oxidative phosphorylation. J Biol Chem. 1954 Oct;210(2):545–550. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES