Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Feb 1;108(2):613–624. doi: 10.1083/jcb.108.2.613

Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43

PMCID: PMC2115450  PMID: 2918027

Abstract

Growth cones, the motile apparatus at the ends of elongating axons, are sites of extensive and dynamic membrane-cytoskeletal interaction and insertion of new membrane into the growing axon. One of the most abundant proteins in growth cone membranes is a protein designated GAP- 43, whose synthesis increases dramatically in most neurons during periods of axon development or regeneration. We have begun to explore the role of GAP-43 in growth cone membrane functions by asking how the protein interacts with those membranes. Membrane-washing experiments indicate that mature GAP-43 is tightly bound to growth cone membranes, and partitioning of Triton X-114-solubilized GAP-43 between detergent- enriched and detergent-depleted phases indicates considerable hydrophobicity. The hydrophobic behavior of the protein is modulated by divalent cations, particularly zinc and calcium. In vivo labeling of GAP-43 in neonatal rat brain with [35S]methionine shows that GAP-43 is initially synthesized as a soluble protein that becomes attached to membranes posttranslationally. In tissue culture, both rat cerebral cortex cells and neuron-like PC12 cells actively incorporate [3H]palmitic acid into GAP-43. Isolated growth cones detached from their cell bodies also incorporate labeled fatty acid into GAP-43, suggesting active turnover of the fatty acid moieties on the mature protein. Hydrolysis of ester-like bonds with neutral hydroxylamine removes the bound fatty acid and exposes new thiol groups on GAP-43, suggesting that fatty acid is attached to the protein's only two cysteine residues, located in a short hydrophobic domain at the amino terminus. Modulation of the protein's hydrophobic behavior by divalent cations suggests that other domains, containing large numbers of negatively charged residues, might also contribute to GAP-43-membrane interactions. Our observations suggest a dynamic and reversible interaction of GAP-43 with growth cone membranes.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderem A. A., Albert K. A., Keum M. M., Wang J. K., Greengard P., Cohn Z. A. Stimulus-dependent myristoylation of a major substrate for protein kinase C. Nature. 1988 Mar 24;332(6162):362–364. doi: 10.1038/332362a0. [DOI] [PubMed] [Google Scholar]
  2. Akers R. F., Routtenberg A. Calcium-promoted translocation of protein kinase C to synaptic membranes: relation to the phosphorylation of an endogenous substrate (protein F1) involved in synaptic plasticity. J Neurosci. 1987 Dec;7(12):3976–3983. doi: 10.1523/JNEUROSCI.07-12-03976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aletta J. M., Greene L. A. Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J Neurosci. 1988 Apr;8(4):1425–1435. doi: 10.1523/JNEUROSCI.08-04-01425.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alexander K. A., Cimler B. M., Meier K. E., Storm D. R. Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein. J Biol Chem. 1987 May 5;262(13):6108–6113. [PubMed] [Google Scholar]
  5. Andreasen T. J., Luetje C. W., Heideman W., Storm D. R. Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes. Biochemistry. 1983 Sep 27;22(20):4615–4618. doi: 10.1021/bi00289a001. [DOI] [PubMed] [Google Scholar]
  6. Bar-Sagi D., Feramisco J. R. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell. 1985 Oct;42(3):841–848. doi: 10.1016/0092-8674(85)90280-6. [DOI] [PubMed] [Google Scholar]
  7. Basi G. S., Jacobson R. D., Virág I., Schilling J., Skene J. H. Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell. 1987 Jun 19;49(6):785–791. doi: 10.1016/0092-8674(87)90616-7. [DOI] [PubMed] [Google Scholar]
  8. Benowitz L. I., Apostolides P. J., Perrone-Bizzozero N., Finklestein S. P., Zwiers H. Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J Neurosci. 1988 Jan;8(1):339–352. doi: 10.1523/JNEUROSCI.08-01-00339.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Benowitz L. I., Lewis E. R. Increased transport of 44,000- to 49,000-dalton acidic proteins during regeneration of the goldfish optic nerve: a two-dimensional gel analysis. J Neurosci. 1983 Nov;3(11):2153–2163. doi: 10.1523/JNEUROSCI.03-11-02153.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Benowitz L. I., Perrone-Bizzozero N. I., Finklestein S. P. Molecular properties of the growth-associated protein GAP-43 (B-50). J Neurochem. 1987 May;48(5):1640–1647. doi: 10.1111/j.1471-4159.1987.tb05713.x. [DOI] [PubMed] [Google Scholar]
  11. Berger M., Schmidt M. F. Cell-free fatty acid acylation of Semliki Forest viral polypeptides with microsomal membranes from eukaryotic cells. J Biol Chem. 1984 Jun 10;259(11):7245–7252. [PubMed] [Google Scholar]
  12. Bizzozero O. A., McGarry J. F., Lees M. B. Acylation of endogenous myelin proteolipid protein with different acyl-CoAs. J Biol Chem. 1987 Feb 15;262(5):2138–2145. [PubMed] [Google Scholar]
  13. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  14. Booher J., Sensenbrenner M. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology. 1972;2(3):97–105. [PubMed] [Google Scholar]
  15. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  16. Bray D., Chapman K. Analysis of microspike movements on the neuronal growth cone. J Neurosci. 1985 Dec;5(12):3204–3213. doi: 10.1523/JNEUROSCI.05-12-03204.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Burn P. Amphitropic proteins: a new class of membrane proteins. Trends Biochem Sci. 1988 Mar;13(3):79–83. doi: 10.1016/0968-0004(88)90043-6. [DOI] [PubMed] [Google Scholar]
  18. Burn P., Burger M. M. The cytoskeletal protein vinculin contains transformation-sensitive, covalently bound lipid. Science. 1987 Jan 23;235(4787):476–479. doi: 10.1126/science.3099391. [DOI] [PubMed] [Google Scholar]
  19. Chan S. Y., Murakami K., Routtenberg A. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity. J Neurosci. 1986 Dec;6(12):3618–3627. doi: 10.1523/JNEUROSCI.06-12-03618.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  21. Dunn S. D. Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal Biochem. 1986 Aug 15;157(1):144–153. doi: 10.1016/0003-2697(86)90207-1. [DOI] [PubMed] [Google Scholar]
  22. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  23. Fleischman L. F., Chahwala S. B., Cantley L. ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science. 1986 Jan 24;231(4736):407–410. doi: 10.1126/science.3001936. [DOI] [PubMed] [Google Scholar]
  24. Freeman J. A., Manis P. B., Snipes G. J., Mayes B. N., Samson P. C., Wikswo J. P., Jr, Freeman D. B. Steady growth cone currents revealed by a novel circularly vibrating probe: a possible mechanism underlying neurite growth. J Neurosci Res. 1985;13(1-2):257–283. doi: 10.1002/jnr.490130118. [DOI] [PubMed] [Google Scholar]
  25. Gordon-Weeks P. R., Lockerbie R. O. Isolation and partial characterisation of neuronal growth cones from neonatal rat forebrain. Neuroscience. 1984 Sep;13(1):119–136. doi: 10.1016/0306-4522(84)90264-1. [DOI] [PubMed] [Google Scholar]
  26. Gordon-Weeks P. R. The cytoskeletons of isolated, neuronal growth cones. Neuroscience. 1987 Jun;21(3):977–989. doi: 10.1016/0306-4522(87)90052-2. [DOI] [PubMed] [Google Scholar]
  27. Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
  28. Griffin J. W., Price D. L., Drachman D. B., Morris J. Incorporation of axonally transported glycoproteins into axolemma during nerve regeneration. J Cell Biol. 1981 Jan;88(1):205–214. doi: 10.1083/jcb.88.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hagag N., Halegoua S., Viola M. Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature. 1986 Feb 20;319(6055):680–682. doi: 10.1038/319680a0. [DOI] [PubMed] [Google Scholar]
  30. Ignatius M. J., Gebicke-Haerter P. J., Pitas R. E., Shooter E. M. Apolipoprotein E in nerve injury and repair. Prog Brain Res. 1987;71:177–184. doi: 10.1016/s0079-6123(08)61822-1. [DOI] [PubMed] [Google Scholar]
  31. Ignatius M. J., Gebicke-Härter P. J., Skene J. H., Schilling J. W., Weisgraber K. H., Mahley R. W., Shooter E. M. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1125–1129. doi: 10.1073/pnas.83.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ignatius M. J., Shooter E. M., Pitas R. E., Mahley R. W. Lipoprotein uptake by neuronal growth cones in vitro. Science. 1987 May 22;236(4804):959–962. doi: 10.1126/science.3576212. [DOI] [PubMed] [Google Scholar]
  33. Jacobson R. D., Virág I., Skene J. H. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci. 1986 Jun;6(6):1843–1855. doi: 10.1523/JNEUROSCI.06-06-01843.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Jen G., Thach R. E. Inhibition of host translation in encephalomyocarditis virus-infected L cells: a novel mechanism. J Virol. 1982 Jul;43(1):250–261. doi: 10.1128/jvi.43.1.250-261.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kalil K., Skene J. H. Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J Neurosci. 1986 Sep;6(9):2563–2570. doi: 10.1523/JNEUROSCI.06-09-02563.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Karns L. R., Ng S. C., Freeman J. A., Fishman M. C. Cloning of complementary DNA for GAP-43, a neuronal growth-related protein. Science. 1987 May 1;236(4801):597–600. doi: 10.1126/science.2437653. [DOI] [PubMed] [Google Scholar]
  37. Kater S. B., Mattson M. P., Cohan C., Connor J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 1988 Jul;11(7):315–321. doi: 10.1016/0166-2236(88)90094-x. [DOI] [PubMed] [Google Scholar]
  38. Kaufman J. F., Krangel M. S., Strominger J. L. Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds. J Biol Chem. 1984 Jun 10;259(11):7230–7238. [PubMed] [Google Scholar]
  39. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  40. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  41. Lovinger D. M., Colley P. A., Akers R. F., Nelson R. B., Routtenberg A. Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C. Brain Res. 1986 Dec 10;399(2):205–211. doi: 10.1016/0006-8993(86)91510-6. [DOI] [PubMed] [Google Scholar]
  42. Magee A. I., Courtneidge S. A. Two classes of fatty acid acylated proteins exist in eukaryotic cells. EMBO J. 1985 May;4(5):1137–1144. doi: 10.1002/j.1460-2075.1985.tb03751.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Magee A. I., Gutierrez L., McKay I. A., Marshall C. J., Hall A. Dynamic fatty acylation of p21N-ras. EMBO J. 1987 Nov;6(11):3353–3357. doi: 10.1002/j.1460-2075.1987.tb02656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Masure H. R., Alexander K. A., Wakim B. T., Storm D. R. Physicochemical and hydrodynamic characterization of P-57, a neurospecific calmodulin binding protein. Biochemistry. 1986 Nov 18;25(23):7553–7560. doi: 10.1021/bi00371a044. [DOI] [PubMed] [Google Scholar]
  45. McGuire C. B., Snipes G. J., Norden J. J. Light-microscopic immunolocalization of the growth- and plasticity-associated protein GAP-43 in the developing rat brain. Brain Res. 1988 Jun 1;469(1-2):277–291. doi: 10.1016/0165-3806(88)90189-7. [DOI] [PubMed] [Google Scholar]
  46. McIlhinney R. A., Pelly S. J., Chadwick J. K., Cowley G. P. Studies on the attachment of myristic and palmitic acid to cell proteins in human squamous carcinoma cell lines: evidence for two pathways. EMBO J. 1985 May;4(5):1145–1152. doi: 10.1002/j.1460-2075.1985.tb03752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Meiri K. F., Pfenninger K. H., Willard M. B. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci U S A. 1986 May;83(10):3537–3541. doi: 10.1073/pnas.83.10.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  49. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  50. Oestreicher A. B., Dekker L. V., Gispen W. H. A radioimmunoassay for the phosphoprotein B-50: distribution in rat brain. J Neurochem. 1986 May;46(5):1366–1369. doi: 10.1111/j.1471-4159.1986.tb01748.x. [DOI] [PubMed] [Google Scholar]
  51. Oestreicher A. B., Gispen W. H. Comparison of the immunocytochemical distribution of the phosphoprotein B-50 in the cerebellum and hippocampus of immature and adult rat brain. Brain Res. 1986 Jun 11;375(2):267–279. doi: 10.1016/0006-8993(86)90747-x. [DOI] [PubMed] [Google Scholar]
  52. Oestreicher A. B., Van Dongen C. J., Zwiers H., Gispen W. H. Affinity-purified anti-B-50 protein antibody: interference with the function of the phosphoprotein B-50 in synaptic plasma membranes. J Neurochem. 1983 Aug;41(2):331–340. doi: 10.1111/j.1471-4159.1983.tb04747.x. [DOI] [PubMed] [Google Scholar]
  53. Olson E. N., Towler D. A., Glaser L. Specificity of fatty acid acylation of cellular proteins. J Biol Chem. 1985 Mar 25;260(6):3784–3790. [PubMed] [Google Scholar]
  54. Perrone-Bizzozero N. I., Benowitz L. I. Expression of a 48-kilodalton growth-associated protein in the goldfish retina. J Neurochem. 1987 Feb;48(2):644–652. doi: 10.1111/j.1471-4159.1987.tb04141.x. [DOI] [PubMed] [Google Scholar]
  55. Perrone-Bizzozero N. I., Weiner D., Hauser G., Benowitz L. I. Extraction of major acidic Ca2+ dependent phosphoproteins from synaptic membranes. J Neurosci Res. 1988 Jul;20(3):346–350. doi: 10.1002/jnr.490200308. [DOI] [PubMed] [Google Scholar]
  56. Peters S., Koh J., Choi D. W. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science. 1987 May 1;236(4801):589–593. doi: 10.1126/science.2883728. [DOI] [PubMed] [Google Scholar]
  57. Pfenninger K. H., Maylié-Pfenninger M. F. Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion. J Cell Biol. 1981 Jun;89(3):547–559. doi: 10.1083/jcb.89.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rosenthal A., Chan S. Y., Henzel W., Haskell C., Kuang W. J., Chen E., Wilcox J. N., Ullrich A., Goeddel D. V., Routtenberg A. Primary structure and mRNA localization of protein F1, a growth-related protein kinase C substrate associated with synaptic plasticity. EMBO J. 1987 Dec 1;6(12):3641–3646. doi: 10.1002/j.1460-2075.1987.tb02696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Routtenberg A. Synaptic plasticity and protein kinase C. Prog Brain Res. 1986;69:211–234. doi: 10.1016/s0079-6123(08)61061-4. [DOI] [PubMed] [Google Scholar]
  60. Sefton B. M., Buss J. E. The covalent modification of eukaryotic proteins with lipid. J Cell Biol. 1987 Jun;104(6):1449–1453. doi: 10.1083/jcb.104.6.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Skene J. H., Jacobson R. D., Snipes G. J., McGuire C. B., Norden J. J., Freeman J. A. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science. 1986 Aug 15;233(4765):783–786. doi: 10.1126/science.3738509. [DOI] [PubMed] [Google Scholar]
  62. Skene J. H., Shooter E. M. Denervated sheath cells secrete a new protein after nerve injury. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4169–4173. doi: 10.1073/pnas.80.13.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Skene J. H., Willard M. Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol. 1981 Apr;89(1):96–103. doi: 10.1083/jcb.89.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Skene J. H., Willard M. Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol. 1981 Apr;89(1):86–95. doi: 10.1083/jcb.89.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Skene J. H., Willard M. Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons. J Neurosci. 1981 Apr;1(4):419–426. doi: 10.1523/JNEUROSCI.01-04-00419.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Snipes G. J., McGuire C. B., Norden J. J., Freeman J. A. Nerve injury stimulates the secretion of apolipoprotein E by nonneuronal cells. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1130–1134. doi: 10.1073/pnas.83.4.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Towler D. A., Eubanks S. R., Towery D. S., Adams S. P., Glaser L. Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase. J Biol Chem. 1987 Jan 25;262(3):1030–1036. [PubMed] [Google Scholar]
  68. Van Dongen C. J., Zwiers H., De Graan P. N., Gispen W. H. Modulation of the activity of purified phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein. Biochem Biophys Res Commun. 1985 May 16;128(3):1219–1227. doi: 10.1016/0006-291x(85)91070-8. [DOI] [PubMed] [Google Scholar]
  69. Wakelam M. J., Davies S. A., Houslay M. D., McKay I., Marshall C. J., Hall A. Normal p21N-ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature. 1986 Sep 11;323(6084):173–176. doi: 10.1038/323173a0. [DOI] [PubMed] [Google Scholar]
  70. Wakim B. T., Alexander K. A., Masure H. R., Cimler B. M., Storm D. R., Walsh K. A. Amino acid sequence of P-57, a neurospecific calmodulin-binding protein. Biochemistry. 1987 Nov 17;26(23):7466–7470. doi: 10.1021/bi00397a040. [DOI] [PubMed] [Google Scholar]
  71. Willard M., Cowan W. M., Vagelos P. R. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2183–2187. doi: 10.1073/pnas.71.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zwiers H., Schotman P., Gispen W. H. Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes. J Neurochem. 1980 Jun;34(6):1689–1699. doi: 10.1111/j.1471-4159.1980.tb11262.x. [DOI] [PubMed] [Google Scholar]
  73. Zwiers H., Verhaagen J., van Dongen C. J., de Graan P. N., Gispen W. H. Resolution of rat brain synaptic phosphoprotein B-50 into multiple forms by two-dimensional electrophoresis: evidence for multisite phosphorylation. J Neurochem. 1985 Apr;44(4):1083–1090. doi: 10.1111/j.1471-4159.1985.tb08728.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES