Abstract
In the mammalian host, the unicellular flagellate Trypanosoma brucei is covered by a dense surface coat that consists of a single species of macromolecule, the membrane form of the variant surface glycoprotein (mfVSG). After uptake by the insect vector, the tsetse fly, bloodstream- form trypanosomes differentiate to procyclic forms in the fly midgut. Differentiation is characterized by the loss of the mfVSG coat and the acquisition of a new surface glycoprotein, procyclin. In this study, the change in surface glycoprotein composition during differentiation was investigated in vitro. After triggering differentiation, a rapid increase in procyclin-specific mRNA was observed. In contrast, there was a lag of several hours before procyclin could be detected. Procyclin was incorporated and uniformly distributed in the surface coat. The VSG coat was subsequently shed. For a single cell, it took 12- 16 h to express a maximum level of procyclin at the surface while the loss of the VSG coat required approximately 4 h. The data are discussed in terms of the possible molecular arrangement of mfVSG and procyclin at the cell surface. Molecular modeling data suggest that a (Asp-Pro)2 (Glu-Pro)22-29 repeat in procyclin assumes a cylindrical shape 14-18 nm in length and 0.9 nm in diameter. This extended shape would enable procyclin to interdigitate between the mfVSG molecules during differentiation, exposing epitopes beyond the 12-15-nm-thick VSG coat.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry J. D., Vickerman K. Trypanosoma brucei: loss of variable antigens during transformation from bloodstream to procyclic forms in vitro. Exp Parasitol. 1979 Oct;48(2):313–324. doi: 10.1016/0014-4894(79)90114-0. [DOI] [PubMed] [Google Scholar]
- Bestagno M., Cerino A., Riva S., Astaldi Ricotti G. C. Improvements of Western blotting to detect monoclonal antibodies. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1509–1514. doi: 10.1016/0006-291x(87)90820-5. [DOI] [PubMed] [Google Scholar]
- Birk H. W., Koepsell H. Reaction of monoclonal antibodies with plasma membrane proteins after binding on nitrocellulose: renaturation of antigenic sites and reduction of nonspecific antibody binding. Anal Biochem. 1987 Jul;164(1):12–22. doi: 10.1016/0003-2697(87)90360-5. [DOI] [PubMed] [Google Scholar]
- Brown R. C., Evans D. A., Vickerman K. Changes in oxidative metabolism and ultrastructure accompanying differentiation of the mitochondrion in Trypanosoma brucei. Int J Parasitol. 1973 Sep;3(5):691–704. doi: 10.1016/0020-7519(73)90095-7. [DOI] [PubMed] [Google Scholar]
- Bülow R., Nonnengässer C., Overath P. Release of the variant surface glycoprotein during differentiation of bloodstream to procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol. 1989 Jan 1;32(1):85–92. doi: 10.1016/0166-6851(89)90132-1. [DOI] [PubMed] [Google Scholar]
- Cardoso de Almeida M. L., Turner M. J. The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature. 1983 Mar 24;302(5906):349–352. doi: 10.1038/302349a0. [DOI] [PubMed] [Google Scholar]
- Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
- Donelson J. E. Antigenic variation in African trypanosomes. Contrib Microbiol Immunol. 1987;8:138–175. [PubMed] [Google Scholar]
- Ehlers B., Czichos J., Overath P. RNA turnover in Trypanosoma brucei. Mol Cell Biol. 1987 Mar;7(3):1242–1249. doi: 10.1128/mcb.7.3.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans J. S., Levine B. A., Trayer I. P., Dorman C. J., Higgins C. F. Sequence-imposed structural constraints in the TonB protein of E. coli. FEBS Lett. 1986 Nov 24;208(2):211–216. doi: 10.1016/0014-5793(86)81020-1. [DOI] [PubMed] [Google Scholar]
- Ferguson M. A., Homans S. W., Dwek R. A., Rademacher T. W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988 Feb 12;239(4841 Pt 1):753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
- Ferguson M. A., Low M. G., Cross G. A. Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1985 Nov 25;260(27):14547–14555. [PubMed] [Google Scholar]
- Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
- Freymann D. M., Metcalf P., Turner M., Wiley D. C. 6 A-resolution X-ray structure of a variable surface glycoprotein from Trypanosoma brucei. Nature. 1984 Sep 13;311(5982):167–169. doi: 10.1038/311167a0. [DOI] [PubMed] [Google Scholar]
- Honigberg B. M., Cunningham I., Stanley H. A., Su-Lin K. E., Luckins A. G. Trypanosoma brucei: antigenic analysis of bloodstream, vector, and culture stages by the quantitative fluorescent antibody methods. Exp Parasitol. 1976 Jun;39(3):496–522. doi: 10.1016/0014-4894(76)90052-7. [DOI] [PubMed] [Google Scholar]
- Jähnig F., Bülow R., Baltz T., Overath P. Secondary structure of the variant surface glycoproteins of trypanosomes. FEBS Lett. 1987 Aug 31;221(1):37–42. doi: 10.1016/0014-5793(87)80348-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liu M. K., Pearson T. W. Detection of circulating trypanosomal antigens by double antibody ELISA using antibodies to procyclic trypanosomes. Parasitology. 1987 Oct;95(Pt 2):277–290. doi: 10.1017/s0031182000057735. [DOI] [PubMed] [Google Scholar]
- McMaster G. K., Carmichael G. G. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835–4838. doi: 10.1073/pnas.74.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metcalf P., Blum M., Freymann D., Turner M., Wiley D. C. Two variant surface glycoproteins of Trypanosoma brucei of different sequence classes have similar 6 A resolution X-ray structures. Nature. 1987 Jan 1;325(6099):84–86. doi: 10.1038/325084a0. [DOI] [PubMed] [Google Scholar]
- Mowatt M. R., Clayton C. E. Developmental regulation of a novel repetitive protein of Trypanosoma brucei. Mol Cell Biol. 1987 Aug;7(8):2838–2844. doi: 10.1128/mcb.7.8.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mowatt M. R., Clayton C. E. Polymorphism in the procyclic acidic repetitive protein gene family of Trypanosoma brucei. Mol Cell Biol. 1988 Oct;8(10):4055–4062. doi: 10.1128/mcb.8.10.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overath P., Czichos J., Haas C. The effect of citrate/cis-aconitate on oxidative metabolism during transformation of Trypanosoma brucei. Eur J Biochem. 1986 Oct 1;160(1):175–182. doi: 10.1111/j.1432-1033.1986.tb09955.x. [DOI] [PubMed] [Google Scholar]
- Overath P., Czichos J., Stock U., Nonnengaesser C. Repression of glycoprotein synthesis and release of surface coat during transformation of Trypanosoma brucei. EMBO J. 1983;2(10):1721–1728. doi: 10.1002/j.1460-2075.1983.tb01648.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pears C. J., Williams J. G. Identification of a DNA sequence element required for efficient expression of a developmentally regulated and cAMP-inducible gene of Dictyostelium discoideum. EMBO J. 1987 Jan;6(1):195–200. doi: 10.1002/j.1460-2075.1987.tb04738.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson T. W., Moloo S. K., Jenni L. Culture form and tsetse fly midgut form procyclic Trypanosoma brucei express common proteins. Mol Biochem Parasitol. 1987 Oct;25(3):273–278. doi: 10.1016/0166-6851(87)90091-0. [DOI] [PubMed] [Google Scholar]
- Richardson J. P., Beecroft R. P., Tolson D. L., Liu M. K., Pearson T. W. Procyclin: an unusual immunodominant glycoprotein surface antigen from the procyclic stage of African trypanosomes. Mol Biochem Parasitol. 1988 Dec;31(3):203–216. doi: 10.1016/0166-6851(88)90150-8. [DOI] [PubMed] [Google Scholar]
- Richardson J. P., Jenni L., Beecroft R. P., Pearson T. W. Procyclic tsetse fly midgut forms and culture forms of African trypanosomes share stage- and species-specific surface antigens identified by monoclonal antibodies. J Immunol. 1986 Mar 15;136(6):2259–2264. [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Roditi I., Carrington M., Turner M. Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature. 1987 Jan 15;325(6101):272–274. doi: 10.1038/325272a0. [DOI] [PubMed] [Google Scholar]
- SEED J. R. ANTIGENIC SIMILARITY AMONG CULTURE FORMS OF THE 'BRUCEI' GROUP OF TRYPANOSOMES. Parasitology. 1964 Aug;54:593–596. doi: 10.1017/s0031182000082639. [DOI] [PubMed] [Google Scholar]
- Schmitz B., Klein R. A., Duncan I. A., Egge H., Gunawan J., Peter-Katalinic J., Dabrowski U., Dabrowski J. MS and NMR analysis of the cross-reacting determinant glycan from Trypanosoma brucei brucei MITat 1.6 variant specific glycoprotein. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1055–1063. doi: 10.1016/0006-291x(87)90754-6. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Ploeg L. H. Control of variant surface antigen switching in trypanosomes. Cell. 1987 Oct 23;51(2):159–161. doi: 10.1016/0092-8674(87)90140-1. [DOI] [PubMed] [Google Scholar]
- Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull. 1985 Apr;41(2):105–114. doi: 10.1093/oxfordjournals.bmb.a072036. [DOI] [PubMed] [Google Scholar]
- Vickerman K., Luckins A. G. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature. 1969 Dec 13;224(5224):1125–1126. doi: 10.1038/2241125a0. [DOI] [PubMed] [Google Scholar]
- Wallach M., Fong D., Chang K. P. Post-transcriptional control of tubulin biosynthesis during leishmanial differentiation. Nature. 1982 Oct 14;299(5884):650–652. doi: 10.1038/299650a0. [DOI] [PubMed] [Google Scholar]
- van Gunsteren W. F., Berendsen H. J., Hermans J., Hol W. G., Postma J. P. Computer simulation of the dynamics of hydrated protein crystals and its comparison with x-ray data. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4315–4319. doi: 10.1073/pnas.80.14.4315. [DOI] [PMC free article] [PubMed] [Google Scholar]