Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jul 1;109(1):35–50. doi: 10.1083/jcb.109.1.35

Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells

PMCID: PMC2115466  PMID: 2745555

Abstract

In guinea pig exocrine pancreatic cells intracisternal granules (ICGs) occur at a low frequency within the lumen of the RER. By starving and refeeding guinea pigs or injecting them in CoCl2 solution, the number of these granules is greatly increased. We show here that ICGs contain the complete set of secreted pancreatic digestive enzymes and proenzymes. Two other soluble proteins in the lumen of the RER, GRP 78/BiP and protein disulphide isomerase (PDI), are specifically excluded from ICGs. The formation of ICGs, which occurs without acidification of the RER cisternae, is therefore a sorting event involving the cocondensation of a complete set of secretory enzymes and proenzymes, which for brevity we refer to collectively as the zymogens. With the exception of approximately 50% of the RNase, the zymogens in ICGs are covalently cross-linked by intermolecular disulphide bonds. The synthesis of all three resident ER cisternal proteins--PDI, GRP 78/BiP, and GRP 94--with the carboxy-terminal sequence KDEL, is induced in response to the accumulation of massive amounts of misfolded secretory protein in the ICGs in the lumen of the RER. After injection of rats with large doses of parachlorophenylalanine-methylester, crystals form in the lumen of the RER. We show that these crystals appear to be a lattice of amylase with the other zymogens incorporated between the layers. Both GRP 78/BiP and PDI are excluded from these crystals. The formation of these amylase crystals within the RER and the inclusion of other zymogens is, therefore, also a sorting event. These data establish that in exocrine pancreatic cells zymogens can cocondense in the RER into either amorphous aggregates or crystals that exclude other soluble RER proteins. This demonstrates that cocondensation is a mechanism capable of sorting zymogens within the secretory pathway.

Full Text

The Full Text of this article is available as a PDF (6.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Falck J. R., Goldstein J. L., Brown M. S. Visualization of acidic organelles in intact cells by electron microscopy. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4838–4842. doi: 10.1073/pnas.81.15.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G., Pathak R. K. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell. 1985 Mar;40(3):635–643. doi: 10.1016/0092-8674(85)90212-0. [DOI] [PubMed] [Google Scholar]
  3. Balch W. E., Elliott M. M., Keller D. S. ATP-coupled transport of vesicular stomatitis virus G protein between the endoplasmic reticulum and the Golgi. J Biol Chem. 1986 Nov 5;261(31):14681–14689. [PubMed] [Google Scholar]
  4. Bendayan M., Roth J., Perrelet A., Orci L. Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J Histochem Cytochem. 1980 Feb;28(2):149–160. doi: 10.1177/28.2.7354212. [DOI] [PubMed] [Google Scholar]
  5. Bieger W., Kern H. F. Studies on intracellular transport in the rat exocrine pancreas. I. Inhibition by aromatic amino acids in vitro. Virchows Arch A Pathol Anat Histol. 1975 Sep 18;367(4):289–305. doi: 10.1007/BF01239337. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Broadwell R. D., Oliver C. Golgi apparatus, GERL, and secretory granule formation within neurons of the hypothalamo-neurohypophysial system of control and hyperosmotically stressed mice. J Cell Biol. 1981 Aug;90(2):474–484. doi: 10.1083/jcb.90.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  9. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  10. Case R. M. Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cell and other cells. Biol Rev Camb Philos Soc. 1978 May;53(2):211–354. doi: 10.1111/j.1469-185x.1978.tb01437.x. [DOI] [PubMed] [Google Scholar]
  11. Creighton T. E. Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol. 1978;33(3):231–297. doi: 10.1016/0079-6107(79)90030-0. [DOI] [PubMed] [Google Scholar]
  12. Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forssmann W. G., Bieger W. Biosynthese falscher Proteine: Einbau von p-Chlorphenylalanin in Enzyme des exokrinen Pankreas. Res Exp Med (Berl) 1973 Mar 14;160(1):1–20. doi: 10.1007/BF01852575. [DOI] [PubMed] [Google Scholar]
  14. Geuze H. J., Slot J. W. Disproportional immunostaining patterns of two secretory proteins in guinea pig and rat exocrine pancreatic cells. An immunoferritin and fluorescence study. Eur J Cell Biol. 1980 Apr;21(1):93–100. [PubMed] [Google Scholar]
  15. Griffiths G., McDowall A., Back R., Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984 Oct;89(1):65–78. doi: 10.1016/s0022-5320(84)80024-6. [DOI] [PubMed] [Google Scholar]
  16. Hopkins C. R. The biosynthesis, intracellular transport, and packaging of melanocyte-stimulating peptides in the amphibian pars intermedia. J Cell Biol. 1972 Jun;53(3):642–653. doi: 10.1083/jcb.53.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J Cell Biol. 1968 Dec;39(3):589–603. doi: 10.1083/jcb.39.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kassenbrock C. K., Garcia P. D., Walter P., Kelly R. B. Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature. 1988 May 5;333(6168):90–93. doi: 10.1038/333090a0. [DOI] [PubMed] [Google Scholar]
  19. Kern H. F., Kern D. Elektronenmikroskopische Untersuchungen über die Wirkung von Kobaltchlorid auf das exokrine Pankreasgewebe des Meerschweinchens. Virchows Arch B Cell Pathol. 1969;4(1):54–70. [PubMed] [Google Scholar]
  20. Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  21. Kreis T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 1986 May;5(5):931–941. doi: 10.1002/j.1460-2075.1986.tb04306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lambert N., Freedman R. B. Structural properties of homogeneous protein disulphide-isomerase from bovine liver purified by a rapid high-yielding procedure. Biochem J. 1983 Jul 1;213(1):225–234. doi: 10.1042/bj2130225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Macer D. R., Koch G. L. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J Cell Sci. 1988 Sep;91(Pt 1):61–70. doi: 10.1242/jcs.91.1.61. [DOI] [PubMed] [Google Scholar]
  25. McPherson A., Rich A. X-ray crystallographic analysis of swine pancreas -amylase. Biochim Biophys Acta. 1972 Dec 28;285(2):493–497. doi: 10.1016/0005-2795(72)90340-6. [DOI] [PubMed] [Google Scholar]
  26. Merisko E. M., Fletcher M., Palade G. E. The reorganization of the Golgi complex in anoxic pancreatic acinar cells. Pancreas. 1986;1(2):95–109. doi: 10.1097/00006676-198603000-00001. [DOI] [PubMed] [Google Scholar]
  27. Munro S., Pelham H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987 Mar 13;48(5):899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  28. Munro S., Pelham H. R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986 Jul 18;46(2):291–300. doi: 10.1016/0092-8674(86)90746-4. [DOI] [PubMed] [Google Scholar]
  29. Orci L., Ravazzola M., Anderson R. G. The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature. 1987 Mar 5;326(6108):77–79. doi: 10.1038/326077a0. [DOI] [PubMed] [Google Scholar]
  30. PALADE G. E. Intracisternal granules in the exocrine cells of the pancreas. J Biophys Biochem Cytol. 1956 Jul 25;2(4):417–422. doi: 10.1083/jcb.2.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pelham H. R. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 1988 Apr;7(4):913–918. doi: 10.1002/j.1460-2075.1988.tb02896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peters T., Jr, Davidson L. K. The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. J Biol Chem. 1982 Aug 10;257(15):8847–8853. [PubMed] [Google Scholar]
  33. Rall L., Pictet R., Githens S., Rutter W. J. Glucocorticoids modulate the in vitro development of the embryonic rat pancreas. J Cell Biol. 1977 Nov;75(2 Pt 1):398–409. doi: 10.1083/jcb.75.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rausch U., Vasiloudes P., Rüdiger K., Kern H. F. In-vivo stimulation of rat pancreatic acinar cells by infusion of secretin. II. Changes in individual rates of enzyme and isoenzyme biosynthesis. Cell Tissue Res. 1985;242(3):641–644. doi: 10.1007/BF00225431. [DOI] [PubMed] [Google Scholar]
  35. Reggio H. A., Palade G. E. Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol. 1978 May;77(2):288–314. doi: 10.1083/jcb.77.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reggio H., Dagorn J. C. Ionic interactions between bovine chymotrypsinogen A and chondroitin sulfate A.B.C.. A possible model for molecular aggregation in zymogen granules. J Cell Biol. 1978 Sep;78(3):951–957. doi: 10.1083/jcb.78.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Salpeter M. M., Farquhar M. G. High resolution analysis of the secretory pathway in mammotrophs of the rat anterior pituitary. J Cell Biol. 1981 Oct;91(1):240–246. doi: 10.1083/jcb.91.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
  39. Scheele G. A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem. 1975 Jul 25;250(14):5375–5385. [PubMed] [Google Scholar]
  40. Schick J., Kern H., Scheele G. Hormonal stimulation in the exocrine pancreas results in coordinate and anticoordinate regulation of protein synthesis. J Cell Biol. 1984 Nov;99(5):1569–1574. doi: 10.1083/jcb.99.5.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seybold J., Bieger W., Kern H. F. Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. II. Inhibition of antimicrotubular agents. Virchows Arch A Pathol Anat Histol. 1975 Nov 28;368(4):309–327. doi: 10.1007/BF00432309. [DOI] [PubMed] [Google Scholar]
  42. Tartakoff A. M., Jamieson J. D. Subcellular fractionation of the pancreas. Methods Enzymol. 1974;31:41–59. doi: 10.1016/0076-6879(74)31006-3. [DOI] [PubMed] [Google Scholar]
  43. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  44. Wichman A., Svenson A., Andersson L. O. Kinetics of refolding of completely reduced human-serum albumin. Regain of immunochemical reactivity. Eur J Biochem. 1977 Oct 3;79(2):339–344. doi: 10.1111/j.1432-1033.1977.tb11814.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES