Abstract
We have monitored the mixing of both aqueous intracellular and membrane- bound fluorescent dyes during the fusion of human red blood cells to influenza hemagglutinin-expressing fibroblasts using fluorescence spectroscopy and low light, image-enhanced video microscopy. The water- soluble fluorescent dye, N-(7-nitrobenzofurazan-4-yl)taurine, was incorporated into intact human red blood cells. The fluorescence of the dye in the intact red blood cell was partially quenched by hemoglobin. The lipid fluorophore, octadecylrhodamine, was incorporated into the membrane of the same red blood cell at self-quenching concentrations (Morris, S. J., D. P. Sarkar, J. M. White, and R. Blumenthal. 1989. J. Biol. Chem. 264: 3972-3978). Fusion, which allowed movement of the water-soluble dye from the cytoplasm of the red blood cell into the hemagglutinin-expressing fibroblasts, and movement of octadecylrhodamine from membranes of red blood cell to the plasma membrane of the fibroblasts, was observed by fluorescence microscopy as a spatial relocation of dyes, and monitored by spectrofluorometry as an increase in fluorescence. Upon lowering the pH below 5.4, fluorescence increased after a delay of about 30 s at 37 degrees C, reaching a maximum within 3 min. The kinetics, pH profile, and temperature dependence were similar for both fluorescent events measured simultaneously, indicating that influenza hemagglutinin-induced fusion rapidly establishes bilayer continuity and exchange of cytoplasmic contents.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahkong Q. F., Desmazes J. P., Georgescauld D., Lucy J. A. Movements of fluorescent probes in the mechanism of cell fusion induced by poly(ethylene glycol). J Cell Sci. 1987 Oct;88(Pt 3):389–398. doi: 10.1242/jcs.88.3.389. [DOI] [PubMed] [Google Scholar]
- Aroeti B., Henis Y. I. Fusion of native Sendai virions with human erythrocytes. Quantitation by fluorescence photobleaching recovery. Exp Cell Res. 1987 Jun;170(2):322–337. doi: 10.1016/0014-4827(87)90310-7. [DOI] [PubMed] [Google Scholar]
- Blumenthal R., Bali-Puri A., Walter A., Covell D., Eidelman O. pH-dependent fusion of vesicular stomatitis virus with Vero cells. Measurement by dequenching of octadecyl rhodamine fluorescence. J Biol Chem. 1987 Oct 5;262(28):13614–13619. [PubMed] [Google Scholar]
- Blumenthal R. Cooperativity in viral fusion. Cell Biophys. 1988 Jan-Jun;12:1–12. doi: 10.1007/BF02918347. [DOI] [PubMed] [Google Scholar]
- Boulay F., Doms R. W., Webster R. G., Helenius A. Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers. J Cell Biol. 1988 Mar;106(3):629–639. doi: 10.1083/jcb.106.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breckenridge L. J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. 1987 Aug 27-Sep 2Nature. 328(6133):814–817. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
- Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
- Chandler D. E., Heuser J. E. Arrest of membrane fusion events in mast cells by quick-freezing. J Cell Biol. 1980 Aug;86(2):666–674. doi: 10.1083/jcb.86.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choppin P. W., Scheid A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses. Rev Infect Dis. 1980 Jan-Feb;2(1):40–61. doi: 10.1093/clinids/2.1.40. [DOI] [PubMed] [Google Scholar]
- Darmon A., Eidelman O., Cabantchik Z. I. A method for measuring anion transfer across membranes of hemoglobin-free cells and vesicles by continuous monitoring of fluorescence. Anal Biochem. 1982 Jan 15;119(2):313–321. doi: 10.1016/0003-2697(82)90591-7. [DOI] [PubMed] [Google Scholar]
- Doxsey S. J., Sambrook J., Helenius A., White J. An efficient method for introducing macromolecules into living cells. J Cell Biol. 1985 Jul;101(1):19–27. doi: 10.1083/jcb.101.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eidelman O., Cabantchik Z. I. A method for measuring anion transfer across red cell membranes by continuous monitoring of fluorescence. Anal Biochem. 1980 Aug;106(2):335–341. doi: 10.1016/0003-2697(80)90529-1. [DOI] [PubMed] [Google Scholar]
- Eidelman O., Zangvill M., Razin M., Ginsburg H., Cabantchik Z. I. The anion-transfer system of erythrocyte membranes. N-(7-Nitrobenzofurazan-4-yl)taurine, a fluorescent substrate-analogue of the system. Biochem J. 1981 May 1;195(2):503–513. doi: 10.1042/bj1950503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
- Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
- Herrmann A., Pritzen C., Palesch A., Groth T. The influenza virus-induced fusion of erythrocyte ghosts does not depend on osmotic forces. Biochim Biophys Acta. 1988 Sep 1;943(3):411–418. doi: 10.1016/0005-2736(88)90372-0. [DOI] [PubMed] [Google Scholar]
- Hoekstra D., Klappe K. Use of a fluorescence assay to monitor the kinetics of fusion between erythrocyte ghosts, as induced by Sendai virus. Biosci Rep. 1986 Nov;6(11):953–960. doi: 10.1007/BF01114971. [DOI] [PubMed] [Google Scholar]
- Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
- Keller P. M., Person S., Snipes W. A fluorescence enhancement assay of cell fusion. J Cell Sci. 1977 Dec;28:167–177. doi: 10.1242/jcs.28.1.167. [DOI] [PubMed] [Google Scholar]
- Kempf C., Michel M. R., Kohler U., Koblet H. A novel method for the detection of early events in cell-cell fusion of Semliki Forest virus infected cells growing in monolayer cultures. Arch Virol. 1987;95(3-4):283–289. doi: 10.1007/BF01310786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klenk H. D., Rott R., Orlich M., Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975 Dec;68(2):426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
- Lapidot M., Nussbaum O., Loyter A. Fusion of membrane vesicles bearing only the influenza hemagglutinin with erythrocytes, living cultured cells, and liposomes. J Biol Chem. 1987 Oct 5;262(28):13736–13741. [PubMed] [Google Scholar]
- Morris S. J., Sarkar D. P., White J. M., Blumenthal R. Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. Measurement by dequenching of fluorescence. J Biol Chem. 1989 Mar 5;264(7):3972–3978. [PubMed] [Google Scholar]
- Ornberg R. L., Reese T. S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. J Cell Biol. 1981 Jul;90(1):40–54. doi: 10.1083/jcb.90.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pasternak C. A., Gray M. A., Micklem K. J. Membrane changes during viral infection. Biosci Rep. 1982 Aug;2(8):609–612. doi: 10.1007/BF01314224. [DOI] [PubMed] [Google Scholar]
- Patel K., Pasternak C. A. Permeability changes elicited by influenza and Sendai viruses: separation of fusion and leakage by pH-jump experiments. J Gen Virol. 1985 Apr;66(Pt 4):767–775. doi: 10.1099/0022-1317-66-4-767. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Structure and function of hemoglobin. Harvey Lect. 1969;63:213–261. [PubMed] [Google Scholar]
- Sambrook J., Rodgers L., White J., Gething M. J. Lines of BPV-transformed murine cells that constitutively express influenza virus hemagglutinin. EMBO J. 1985 Jan;4(1):91–103. doi: 10.1002/j.1460-2075.1985.tb02322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato S. B., Kawasaki K., Ohnishi S. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3153–3157. doi: 10.1073/pnas.80.11.3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowers A. E. The long-lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile. Biophys J. 1987 Dec;52(6):1015–1020. doi: 10.1016/S0006-3495(87)83294-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J., Helenius A., Gething M. J. Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature. 1982 Dec 16;300(5893):658–659. doi: 10.1038/300658a0. [DOI] [PubMed] [Google Scholar]
- White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys. 1983 May;16(2):151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
- White J., Matlin K., Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol. 1981 Jun;89(3):674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
- Wojcieszyn J. W., Schlegel R. A., Lumley-Sapanski K., Jacobson K. A. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J Cell Biol. 1983 Jan;96(1):151–159. doi: 10.1083/jcb.96.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerberg J., Cohen F. S., Finkelstein A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J Gen Physiol. 1980 Mar;75(3):241–250. doi: 10.1085/jgp.75.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerberg J., Curran M., Cohen F. S., Brodwick M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1585–1589. doi: 10.1073/pnas.84.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
