Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jul 1;109(1):295–307. doi: 10.1083/jcb.109.1.295

The use of retinoic acid to probe the relation between hyperproliferation-associated keratins and cell proliferation in normal and malignant epidermal cells

PMCID: PMC2115483  PMID: 2473080

Abstract

When cells from normal human epidermis and from the human squamous cell carcinoma line SCC-13 were seeded on floating rafts of collagen and fibroblasts, they stratified and underwent terminal differentiation. Although the program of differentiation in SCC-13 cells was morphologically abnormal, the cultures resembled normal epidermal raft cultures by expressing the terminal differentiation-specific keratins, K1/K10, and by restricting their proliferative capacity to the basal- like cells of the population. In addition, the differentiating cells of both normal and SCC-13 raft cultures expressed keratins K6 and K16, which are not normally expressed in epidermis, but are synthesized suprabasally during wound-healing and in various epidermal diseases associated with hyperproliferation. While the behavior of normal and SCC-13 rafts was quite similar when they were cultured over normal medium, significant biochemical differences began to emerge when the cultures were exposed to retinoic acid. Most notably, while the SCC-13 cultures still stratified extensively, they showed a marked inhibition of both abnormal (K6/K16) and normal (K1/K10) differentiation- associated keratins, concomitantly with an overall disappearance of differentiated phenotype. Surprisingly, the reduction in K6/K16 in retinoid-treated SCC-13 cultures was not accompanied by a decrease in cell proliferation. Using immunohistochemistry combined with [3H]thymidine labeling, we demonstrate that while the expression of K6 and K16 are often associated with hyperproliferation, these keratins are only produced in the nondividing, differentiating populations of proliferating cultures. Moreover, since their expression can be suppressed without a corresponding decrease in proliferation, the expression of these keratins cannot be essential to the nature of the hyperproliferative epidermal cell.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers K. M., Greif F., Setzer R. W., Taichman L. B. Cell-cycle withdrawal in cultured keratinocytes. Differentiation. 1987;34(3):236–240. doi: 10.1111/j.1432-0436.1987.tb00071.x. [DOI] [PubMed] [Google Scholar]
  2. Albers K., Fuchs E. Expression of mutant keratin cDNAs in epithelial cells reveals possible mechanisms for initiation and assembly of intermediate filaments. J Cell Biol. 1989 Apr;108(4):1477–1493. doi: 10.1083/jcb.108.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asselineau D., Bernard B. A., Bailly C., Darmon M., Pruniéras M. Human epidermis reconstructed by culture: is it "normal"? J Invest Dermatol. 1986 Feb;86(2):181–186. doi: 10.1111/1523-1747.ep12284237. [DOI] [PubMed] [Google Scholar]
  4. Asselineau D., Bernhard B., Bailly C., Darmon M. Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp Cell Res. 1985 Aug;159(2):536–539. doi: 10.1016/s0014-4827(85)80027-6. [DOI] [PubMed] [Google Scholar]
  5. Baden H. P., McGilvray N., Cheng C. K., Lee L. D., Kubilus J. The keratin polypeptides of psoriatic epidermis. J Invest Dermatol. 1978 May;70(5):294–297. doi: 10.1111/1523-1747.ep12541529. [DOI] [PubMed] [Google Scholar]
  6. Breitkreutz D., Tilgen W., Boukamp P., Fusenig N. E. Correlation of prekaratin peptides and ultrastructure in epithelial cells of human skin tumors in vivo and in vitro. Anticancer Res. 1981;1(6):323–328. [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Chopra D. P., Flaxman B. A. The effect of vitamin A on growth and differentiation of human keratinocytes in vitro. J Invest Dermatol. 1975 Jan;64(1):19–22. doi: 10.1111/1523-1747.ep12540883. [DOI] [PubMed] [Google Scholar]
  9. Connor M. J. Retinoid stimulation of epidermal differentiation in vivo. Life Sci. 1986 May 19;38(20):1807–1812. doi: 10.1016/0024-3205(86)90134-7. [DOI] [PubMed] [Google Scholar]
  10. DeLuca L., Yuspa S. H. Altered glycoprotein synthesis in mouse epidermal cells treated with retinyl acetate in vitro. Exp Cell Res. 1974 May;86(1):106–110. doi: 10.1016/0014-4827(74)90654-5. [DOI] [PubMed] [Google Scholar]
  11. Eckert R. L., Green H. Cloning of cDNAs specifying vitamin A-responsive human keratins. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4321–4325. doi: 10.1073/pnas.81.14.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eichner R., Bonitz P., Sun T. T. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol. 1984 Apr;98(4):1388–1396. doi: 10.1083/jcb.98.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elias P. M., Fritsch P. O., Lampe M., Williams M. L., Brown B. E., Nemanic M., Grayson S. Retinoid effects on epidermal structure, differentiation, and permeability. Lab Invest. 1981 Jun;44(6):531–540. [PubMed] [Google Scholar]
  14. FELL H. B., MELLANBY E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J Physiol. 1953 Mar;119(4):470–488. doi: 10.1113/jphysiol.1953.sp004860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fuchs E., Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980 Apr;19(4):1033–1042. doi: 10.1016/0092-8674(80)90094-x. [DOI] [PubMed] [Google Scholar]
  16. Fuchs E., Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981 Sep;25(3):617–625. doi: 10.1016/0092-8674(81)90169-0. [DOI] [PubMed] [Google Scholar]
  17. Fuchs E., Marchuk D. Type I and type II keratins have evolved from lower eukaryotes to form the epidermal intermediate filaments in mammalian skin. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5857–5861. doi: 10.1073/pnas.80.19.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilfix B. M., Green H. Bioassay of retinoids using cultured human conjunctival keratinocytes. J Cell Physiol. 1984 May;119(2):172–174. doi: 10.1002/jcp.1041190205. [DOI] [PubMed] [Google Scholar]
  19. Giudice G. J., Fuchs E. The transfection of epidermal keratin genes into fibroblasts and simple epithelial cells: evidence for inducing a type I keratin by a type II gene. Cell. 1987 Feb 13;48(3):453–463. doi: 10.1016/0092-8674(87)90196-6. [DOI] [PubMed] [Google Scholar]
  20. Green H., Watt F. M. Regulation by vitamin A of envelope cross-linking in cultured keratinocytes derived from different human epithelia. Mol Cell Biol. 1982 Sep;2(9):1115–1117. doi: 10.1128/mcb.2.9.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hanukoglu I., Fuchs E. The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell. 1983 Jul;33(3):915–924. doi: 10.1016/0092-8674(83)90034-x. [DOI] [PubMed] [Google Scholar]
  22. Hanukoglu I., Fuchs E. The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins. Cell. 1982 Nov;31(1):243–252. doi: 10.1016/0092-8674(82)90424-x. [DOI] [PubMed] [Google Scholar]
  23. Hardy M. H., Sweeny P. R., Bellows C. G. The effects of vitamin A on the epidermis of the fetal mouse in organ culture--an ultrastructural study. J Ultrastruct Res. 1978 Sep;64(3):246–260. doi: 10.1016/s0022-5320(78)90034-5. [DOI] [PubMed] [Google Scholar]
  24. Hashimoto T., Dykes P. J., Marks R. Retinoid-induced inhibition of growth and reduction of spreading of human epidermal cells in culture. Br J Dermatol. 1985 Jun;112(6):637–646. doi: 10.1111/j.1365-2133.1985.tb02331.x. [DOI] [PubMed] [Google Scholar]
  25. Hatzfeld M., Franke W. W. Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol. 1985 Nov;101(5 Pt 1):1826–1841. doi: 10.1083/jcb.101.5.1826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hunter L., Skerrow D. The proteins of living psoriatic epidermis. Biochim Biophys Acta. 1982 Jan 12;714(1):164–169. doi: 10.1016/0304-4165(82)90139-8. [DOI] [PubMed] [Google Scholar]
  27. Kim K. H., Schwartz F., Fuchs E. Differences in keratin synthesis between normal epithelial cells and squamous cell carcinomas are mediated by vitamin A. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4280–4284. doi: 10.1073/pnas.81.14.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kopan R., Traska G., Fuchs E. Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J Cell Biol. 1987 Jul;105(1):427–440. doi: 10.1083/jcb.105.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Lane E. B., Bártek J., Purkis P. E., Leigh I. M. Keratin antigens in differentiating skin. Ann N Y Acad Sci. 1985;455:241–258. doi: 10.1111/j.1749-6632.1985.tb50415.x. [DOI] [PubMed] [Google Scholar]
  31. Lavker R. M., Matoltsy A. G. Formation of horny cells: the fate of cell organelles and differentiation products in ruminal epithelium. J Cell Biol. 1970 Mar;44(3):501–512. doi: 10.1083/jcb.44.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lavker R. M., Sun T. T. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science. 1982 Mar 5;215(4537):1239–1241. doi: 10.1126/science.7058342. [DOI] [PubMed] [Google Scholar]
  33. Leigh I. M., Pulford K. A., Ramaekers F. C., Lane E. B. Psoriasis: maintenance of an intact monolayer basal cell differentiation compartment in spite of hyperproliferation. Br J Dermatol. 1985 Jul;113(1):53–64. doi: 10.1111/j.1365-2133.1985.tb02044.x. [DOI] [PubMed] [Google Scholar]
  34. Lersch R., Fuchs E. Sequence and expression of a type II keratin, K5, in human epidermal cells. Mol Cell Biol. 1988 Jan;8(1):486–493. doi: 10.1128/mcb.8.1.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mansbridge J. N., Knapp A. M. Changes in keratinocyte maturation during wound healing. J Invest Dermatol. 1987 Sep;89(3):253–263. doi: 10.1111/1523-1747.ep12471216. [DOI] [PubMed] [Google Scholar]
  36. Marcelo C. L., Madison K. C. Regulation of the expression of epidermal keratinocyte proliferation and differentiation by vitamin A analogs. Arch Dermatol Res. 1984;276(6):381–389. doi: 10.1007/BF00413359. [DOI] [PubMed] [Google Scholar]
  37. Matoltsy A. G. Desmosomes, filaments, and keratohyaline granules: their role in the stabilization and keratinization of the epidermis. J Invest Dermatol. 1975 Jul;65(1):127–142. doi: 10.1111/1523-1747.ep12598093. [DOI] [PubMed] [Google Scholar]
  38. McGuire J., Osber M., Lightfoot L. Two keratins MW 50,000 and 56,000 are synthesized by psoriatic epidermis. Br J Dermatol. 1984 Jul;111 (Suppl 27):27–37. doi: 10.1111/j.1365-2133.1984.tb15579.x. [DOI] [PubMed] [Google Scholar]
  39. Milstone L. M., LaVigne J. F. Heterogeneity of basal keratinocytes: nonrandom distribution of thymidine-labeled basal cells in confluent cultures is not a technical artifact. J Invest Dermatol. 1985 Jun;84(6):504–507. doi: 10.1111/1523-1747.ep12273479. [DOI] [PubMed] [Google Scholar]
  40. Moll R., Krepler R., Franke W. W. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation. 1983;23(3):256–269. doi: 10.1111/j.1432-0436.1982.tb01291.x. [DOI] [PubMed] [Google Scholar]
  41. Moll R., Moll I., Franke W. W. Differences of expression of cytokeratin polypeptides in various epithelial skin tumors. Arch Dermatol Res. 1984;276(6):349–363. doi: 10.1007/BF00413355. [DOI] [PubMed] [Google Scholar]
  42. Nelson W. G., Sun T. T. The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol. 1983 Jul;97(1):244–251. doi: 10.1083/jcb.97.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  44. Penneys N. S., Fulton J. E., Jr, Weinstein G. D., Frost P. Location of proliferating cells in human epidermis. Arch Dermatol. 1970 Mar;101(3):323–327. [PubMed] [Google Scholar]
  45. Redfern C. P., Todd C. The effects of retinoic acid on rat epidermal cells in vitro: changes in patterns of protein phosphorylation in relation to growth and differentiation. Exp Cell Res. 1988 Feb;174(2):367–377. doi: 10.1016/0014-4827(88)90307-2. [DOI] [PubMed] [Google Scholar]
  46. Rheinwald J. G., Beckett M. A. Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas. Cancer Res. 1981 May;41(5):1657–1663. [PubMed] [Google Scholar]
  47. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  48. Rheinwald J. G. Serial cultivation of normal human epidermal keratinocytes. Methods Cell Biol. 1980;21A:229–254. doi: 10.1016/s0091-679x(08)60769-4. [DOI] [PubMed] [Google Scholar]
  49. Rosenberg M., RayChaudhury A., Shows T. B., Le Beau M. M., Fuchs E. A group of type I keratin genes on human chromosome 17: characterization and expression. Mol Cell Biol. 1988 Feb;8(2):722–736. doi: 10.1128/mcb.8.2.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sporn M. B., Clamon G. H., Dunlop N. M., Newton D. L., Smith J. M., Saffiotti U. Activity of vitamin A analogues in cell cultures of mouse epidermis and organ cultures of hamster trachea. Nature. 1975 Jan 3;253(5486):47–50. doi: 10.1038/253047a0. [DOI] [PubMed] [Google Scholar]
  51. Stoler A., Kopan R., Duvic M., Fuchs E. Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J Cell Biol. 1988 Aug;107(2):427–446. doi: 10.1083/jcb.107.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sun T. T., Green H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J Biol Chem. 1978 Mar 25;253(6):2053–2060. [PubMed] [Google Scholar]
  53. Thaler M., Fukuyama K., Epstein W. L., Fisher K. A. Comparative studies of keratins isolated from psoriasis and atopic dermatitis. J Invest Dermatol. 1980 Aug;75(2):156–158. doi: 10.1111/1523-1747.ep12522546. [DOI] [PubMed] [Google Scholar]
  54. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tyner A. L., Fuchs E. Evidence for posttranscriptional regulation of the keratins expressed during hyperproliferation and malignant transformation in human epidermis. J Cell Biol. 1986 Nov;103(5):1945–1955. doi: 10.1083/jcb.103.5.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. VANSCOTT E. J., EKEL T. M. KINETICS OF HYPERPLASIA IN PSORIASIS. Arch Dermatol. 1963 Oct;88:373–381. [PubMed] [Google Scholar]
  57. Vassar R., Rosenberg M., Ross S., Tyner A., Fuchs E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1563–1567. doi: 10.1073/pnas.86.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Viac J., Staquet M. J., Thivolet J., Goujon C. Experimental production of antibodies against stratum corneum keratin polypeptides. Arch Dermatol Res. 1980;267(2):179–188. doi: 10.1007/BF00569104. [DOI] [PubMed] [Google Scholar]
  59. Weinstein G. D., Van Scott E. J. Autoradiographic analysis of turnover times of normal and psoriatic epidermis. J Invest Dermatol. 1965 Oct;45(4):257–262. doi: 10.1038/jid.1965.126. [DOI] [PubMed] [Google Scholar]
  60. Weiss R. A., Eichner R., Sun T. T. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol. 1984 Apr;98(4):1397–1406. doi: 10.1083/jcb.98.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Weiss R. A., Guillet G. Y., Freedberg I. M., Farmer E. R., Small E. A., Weiss M. M., Sun T. T. The use of monoclonal antibody to keratin in human epidermal disease: alterations in immunohistochemical staining pattern. J Invest Dermatol. 1983 Sep;81(3):224–230. doi: 10.1111/1523-1747.ep12518198. [DOI] [PubMed] [Google Scholar]
  62. Wu Y. J., Parker L. M., Binder N. E., Beckett M. A., Sinard J. H., Griffiths C. T., Rheinwald J. G. The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells and nonkeratinizing epithelia. Cell. 1982 Dec;31(3 Pt 2):693–703. doi: 10.1016/0092-8674(82)90324-5. [DOI] [PubMed] [Google Scholar]
  63. Wu Y. J., Rheinwald J. G. A new small (40 kd) keratin filament protein made by some cultured human squamous cell carcinomas. Cell. 1981 Sep;25(3):627–635. doi: 10.1016/0092-8674(81)90170-7. [DOI] [PubMed] [Google Scholar]
  64. Yardley H. J., Goldstein D. J. Changes in dry weight and projected area of human epidermal cells undergoing keratinization as determined by scanning interference microscopy. Br J Dermatol. 1976 Dec;95(6):621–626. doi: 10.1111/j.1365-2133.1976.tb07034.x. [DOI] [PubMed] [Google Scholar]
  65. Yuspa S. H., Harris C. C. Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exp Cell Res. 1974 May;86(1):95–105. doi: 10.1016/0014-4827(74)90653-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES