Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jul 1;109(1):247–252. doi: 10.1083/jcb.109.1.247

Cyclic AMP enhances the sexual agglutinability of Chlamydomonas flagella

PMCID: PMC2115484  PMID: 2473079

Abstract

Sexual adhesion between Chlamydomonas reinhardtii gametes elicits a rise in intracellular cAMP levels, and exogenous elevation of intracellular cAMP levels in gametes of a single mating type induces such mating responses as cell wall loss, flagellar tip activation, and mating structure activation (Pasquale, S. M., and U. W. Goodenough. 1987. J. Cell Biol. 105:2279-2292). Here evidence is presented that sexual adhesion mobilizes agglutinin to the flagellar surface, and that this mobilization can be induced by exogenous presentation of cAMP to gametes of a single mating type. It is proposed that Chlamydomonas adhesion entails a positive feedback system--initial contacts stimulate the presentation of additional agglutinin--and that this feedback is mediated by adhesion-induced cAMP generation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. S., Monk B. C., Cohen R., Hwang C., Goodenough U. W. Sexual agglutinins from the Chlamydomonas flagellar membrane. Partial purification and characterization. J Biol Chem. 1982 Apr 25;257(8):4593–4602. [PubMed] [Google Scholar]
  2. Bloodgood R. A., Leffler E. M., Bojczuk A. T. Reversible inhibition of Chlamydomonas flagellar surface motility. J Cell Biol. 1979 Sep;82(3):664–674. doi: 10.1083/jcb.82.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper J. B., Adair W. S., Mecham R. P., Heuser J. E. Chlamydomonas agglutinin is a hydroxyproline-rich glycoprotein. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5898–5901. doi: 10.1073/pnas.80.19.5898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Detmers P. A., Condeelis J. Trifluoperazine and W-7 inhibit mating in Chlamydomonas at an early stage of gametic interaction. Exp Cell Res. 1986 Apr;163(2):317–326. doi: 10.1016/0014-4827(86)90063-7. [DOI] [PubMed] [Google Scholar]
  5. Ferris P. J., Goodenough U. W. Transcription of novel genes, including a gene linked to the mating-type locus, induced by Chlamydomonas fertilization. Mol Cell Biol. 1987 Jul;7(7):2360–2366. doi: 10.1128/mcb.7.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forest C. L., Goodenough D. A., Goodenough U. W. Flagellar membrane agglutination and sexual signaling in the conditional GAM-1 mutant of Chlamydomonas. J Cell Biol. 1978 Oct;79(1):74–84. doi: 10.1083/jcb.79.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodenough U. W., Adair W. S., Collin-Osdoby P., Heuser J. E. Structure of the Chlamydomonas agglutinin and related flagellar surface proteins in vitro and in situ. J Cell Biol. 1985 Sep;101(3):924–941. doi: 10.1083/jcb.101.3.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodenough U. W., Detmers P. A., Hwang C. Activation for cell fusion in Chlamydomonas: analysis of wild-type gametes and nonfusing mutants. J Cell Biol. 1982 Feb;92(2):378–386. doi: 10.1083/jcb.92.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodenough U. W., Jurivich D. Tipping and mating-structure activation induced in Chlamydomonas gametes by flagellar membrane antisera. J Cell Biol. 1978 Dec;79(3):680–693. doi: 10.1083/jcb.79.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodenough U. W., Weiss R. L. Gametic differentiation in Chlamydomonas reinhardtii. III. Cell wall lysis and microfilament-associated mating structure activation in wild-type and mutant strains. J Cell Biol. 1975 Dec;67(3):623–637. doi: 10.1083/jcb.67.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  12. LEVINE R. P., EBERSOLD W. T. The genetics and cytology of Chlamydomonas. Annu Rev Microbiol. 1960;14:197–216. doi: 10.1146/annurev.mi.14.100160.001213. [DOI] [PubMed] [Google Scholar]
  13. Martin N. C., Goodenough U. W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol. 1975 Dec;67(3):587–605. doi: 10.1083/jcb.67.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsuda Y., Saito T., Yamaguchi T., Kawase H. Cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii is a metalloprotease and digests the sodium perchlorate-insoluble component of cell wall. J Biol Chem. 1985 May 25;260(10):6373–6377. [PubMed] [Google Scholar]
  15. Pasquale S. M., Goodenough U. W. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol. 1987 Nov;105(5):2279–2292. doi: 10.1083/jcb.105.5.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ranum L. P., Thompson M. D., Schloss J. A., Lefebvre P. A., Silflow C. D. Mapping flagellar genes in Chlamydomonas using restriction fragment length polymorphisms. Genetics. 1988 Sep;120(1):109–122. doi: 10.1093/genetics/120.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sibley D. R., Benovic J. L., Caron M. G., Lefkowitz R. J. Regulation of transmembrane signaling by receptor phosphorylation. Cell. 1987 Mar 27;48(6):913–922. doi: 10.1016/0092-8674(87)90700-8. [DOI] [PubMed] [Google Scholar]
  18. Snell W. J., Moore W. S. Aggregation-dependent turnover of flagellar adhesion molecules in Chlamydomonas gametes. J Cell Biol. 1980 Jan;84(1):203–210. doi: 10.1083/jcb.84.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Snell W. J., Roseman S. Kinetics of adhesion and de-adhesion of Chlamydomonas gametes. J Biol Chem. 1979 Nov 10;254(21):10820–10829. [PubMed] [Google Scholar]
  20. Tomson A. M., Demets R., Sigon C. A., Stegwee D., van den Ende H. Cellular Interactions during the Mating Process in Chlamydomonas eugametos. Plant Physiol. 1986 Jun;81(2):522–526. doi: 10.1104/pp.81.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Umbreit J., Roseman S. A requirement for reversible binding between aggregating embryonic cells before stable adhesion. J Biol Chem. 1975 Dec 25;250(24):9360–9368. [PubMed] [Google Scholar]
  22. WIESE L., JONES R. F. Studies on gamete copulation in heterothalic chlamydomonads. J Cell Comp Physiol. 1963 Jun;61:265–274. doi: 10.1002/jcp.1030610308. [DOI] [PubMed] [Google Scholar]
  23. Wilcox D. K., Sussman M. Serologically distinguishable alterations in the molecular specificity of cell cohesion during morphogenesis in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1981 Jan;78(1):358–362. doi: 10.1073/pnas.78.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Witman G. B., Carlson K., Berliner J., Rosenbaum J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. doi: 10.1083/jcb.54.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES