Abstract
The transbilayer distribution of exogenous phospholipids incorporated into human erythrocytes is monitored through cell morphology changes and by the extraction of incorporated 14C-labeled lipids. Dilauroylphosphatidylserine (DLPS) and dilauroylphosphatidylcholine (DLPC) transfer spontaneously from sonicated unilamellar vesicles to erythrocytes, inducing a discocyte-to-echinocyte shape change within 5 min. DLPC-induced echinocytes revert slowly (t1/2 approximately 8 h) to discocytes, but DLPS-treated cells revert rapidly (10-20 min) to discocytes and then become invaginate stomatocytes. The second phase of the phosphatidylserine (PS)-induced shape change, conversion of echinocytes to stomatocytes, can be inhibited by blocking cell protein sulfhydryl groups or by depleting intracellular ATP or magnesium (Daleke, D. L., and W. H. Huestis. 1985. Biochemistry. 24:5406-5416). These cell shape changes are consistent with incorporation of phosphatidylcholine (PC) and PS into the membrane outer monolayer followed by selective and energy-dependent translocation of PS to the membrane inner monolayer. This hypothesis is explored by correlating cell shape with the fraction of the exogenous lipid accessible to extraction into phospholipid vesicles. Upon exposure to recipient vesicles, DLPC-induced echinocytes revert to discoid forms within 5 min, concomitant with the removal of most (88%) of the radiolabeled lipid. On further incubation, 97% of the foreign PC transfers to recipient vesicles. Treatment of DLPS-induced stomatocytes with acceptor vesicles extracts foreign PS only partially (22%) and does not affect cell shape significantly. Cell treated with inhibitors of aminophospholipid translocation (sulfhydryl blockers or intracellular magnesium depletion) and then incubated with either DLPS or DLPC become echinocytic and do not revert to discocytic or stomatocytic shape for many hours. On treatment with recipient vesicles, these echinocytes revert to discocytes in both cases, with concomitant extraction of 88- 99% of radiolabeled PC and 86-97% of radiolabeled PS. The accessibility of exogenous lipids to extraction is uniformly consistent with the transbilayer lipid distribution inferred from cell shape changes, indicating that red cell morphology is an accurate and sensitive reporter of the transbilayer partitioning of incorporated exogenous phospholipids.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Backer J. M., Dawidowicz E. A. Reconstitution of a phospholipid flippase from rat liver microsomes. 1987 May 28-Jun 3Nature. 327(6120):341–343. doi: 10.1038/327341a0. [DOI] [PubMed] [Google Scholar]
- Beck J. S. Relations between membrane monolayers in some red cell shape transformations. J Theor Biol. 1978 Dec 21;75(4):487–501. doi: 10.1016/0022-5193(78)90358-2. [DOI] [PubMed] [Google Scholar]
- Bevers E. M., Comfurius P., van Rijn J. L., Hemker H. C., Zwaal R. F. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem. 1982 Feb;122(2):429–436. doi: 10.1111/j.1432-1033.1982.tb05898.x. [DOI] [PubMed] [Google Scholar]
- Bishop W. R., Bell R. M. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell. 1985 Aug;42(1):51–60. doi: 10.1016/s0092-8674(85)80100-8. [DOI] [PubMed] [Google Scholar]
- Bitbol M., Devaux P. F. Measurement of outward translocation of phospholipids across human erythrocyte membrane. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6783–6787. doi: 10.1073/pnas.85.18.6783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bretscher M. S. Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol. 1972 Mar 1;236(61):11–12. doi: 10.1038/newbio236011a0. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Phosphatidyl-ethanolamine: differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent. J Mol Biol. 1972 Nov 28;71(3):523–528. doi: 10.1016/s0022-2836(72)80020-2. [DOI] [PubMed] [Google Scholar]
- Comfurius P., Zwaal R. F. The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta. 1977 Jul 20;488(1):36–42. doi: 10.1016/0005-2760(77)90120-5. [DOI] [PubMed] [Google Scholar]
- Daleke D. L., Huestis W. H. Incorporation and translocation of aminophospholipids in human erythrocytes. Biochemistry. 1985 Sep 24;24(20):5406–5416. doi: 10.1021/bi00341a019. [DOI] [PubMed] [Google Scholar]
- Deuticke B. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta. 1968 Dec 10;163(4):494–500. doi: 10.1016/0005-2736(68)90078-3. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Lee K. J., Huestis W. H. Lipid transfer between phosphatidylcholine vesicles and human erythrocytes: exponential decrease in rate with increasing acyl chain length. Biochemistry. 1985 Jun 4;24(12):2857–2864. doi: 10.1021/bi00333a007. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Lee K. J., Huestis W. H. Membrane bilayer balance and erythrocyte shape: a quantitative assessment. Biochemistry. 1985 Jun 4;24(12):2849–2857. doi: 10.1021/bi00333a006. [DOI] [PubMed] [Google Scholar]
- Franck P. F., Op den Kamp J. A., Roelofsen B., van Deenen L. L. Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry? Biochim Biophys Acta. 1986 May 9;857(1):127–130. doi: 10.1016/0005-2736(86)90106-9. [DOI] [PubMed] [Google Scholar]
- Fujii T., Sato T., Tamura A., Wakatsuki M., Kanaho Y. Shape changes of human erythrocytes induced by various amphipathic drugs acting on the membrane of the intact cells. Biochem Pharmacol. 1979 Mar 1;28(5):613–620. doi: 10.1016/0006-2952(79)90144-8. [DOI] [PubMed] [Google Scholar]
- Fujii T., Tamura A., Yamane T. Trans-bilayer movement of added phosphatidylcholine and lysophosphatidylcholine species with various acyl chain lengths in plasma membrane of intact human erythrocytes. J Biochem. 1985 Nov;98(5):1221–1227. doi: 10.1093/oxfordjournals.jbchem.a135388. [DOI] [PubMed] [Google Scholar]
- Gordesky S. E., Marinetti G. V. The asymetric arrangement of phospholipids in the human erythrocyte membrane. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1027–1031. doi: 10.1016/0006-291x(73)91509-x. [DOI] [PubMed] [Google Scholar]
- Herrmann A., Müller P. A model for the asymmetric lipid distribution in the human erythrocyte membrane. Biosci Rep. 1986 Feb;6(2):185–191. doi: 10.1007/BF01115005. [DOI] [PubMed] [Google Scholar]
- Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
- Kawashima Y., Bell R. M. Assembly of the endoplasmic reticulum phospholipid bilayer. Transporters for phosphatidylcholine and metabolites. J Biol Chem. 1987 Dec 5;262(34):16495–16502. [PubMed] [Google Scholar]
- Martin O. C., Pagano R. E. Transbilayer movement of fluorescent analogs of phosphatidylserine and phosphatidylethanolamine at the plasma membrane of cultured cells. Evidence for a protein-mediated and ATP-dependent process(es). J Biol Chem. 1987 Apr 25;262(12):5890–5898. [PubMed] [Google Scholar]
- Mashino K., Tanaka Y., Takahashi K., Inoue K., Nojima S. Hemolytic activities of various phospholipids and their relation to the rate of transfer between membranes. J Biochem. 1983 Sep;94(3):821–831. doi: 10.1093/oxfordjournals.jbchem.a134424. [DOI] [PubMed] [Google Scholar]
- Middelkoop E., Lubin B. H., Op den Kamp J. A., Roelofsen B. Flip-flop rates of individual molecular species of phosphatidylcholine in the human red cell membrane. Biochim Biophys Acta. 1986 Mar 13;855(3):421–424. doi: 10.1016/0005-2736(86)90087-8. [DOI] [PubMed] [Google Scholar]
- Mohandas N., Greenquist A. C., Shohet S. B. Bilayer balance and regulation of red cell shape changes. J Supramol Struct. 1978;9(3):453–458. doi: 10.1002/jss.400090315. [DOI] [PubMed] [Google Scholar]
- Mohandas N., Wyatt J., Mel S. F., Rossi M. E., Shohet S. B. Lipid translocation across the human erythrocyte membrane. Regulatory factors. J Biol Chem. 1982 Jun 10;257(11):6537–6543. [PubMed] [Google Scholar]
- Montecucco C., Schiavo G. 1-Palmitoyl-2-(p-benzoyl)benzoyl phosphatidylcholine, a photoactive phospholipid for the labelling of membrane components. Biochem J. 1986 Jul 1;237(1):309–312. doi: 10.1042/bj2370309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rawyler A., Roelofsen B., Op den Kamp J. A. The use of fluorescamine as a permeant probe to localize phosphatidylethanolamine in intact friend erythroleukaemic cells. Biochim Biophys Acta. 1984 Jan 25;769(2):330–336. doi: 10.1016/0005-2736(84)90314-6. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Lenard J. Membrane asymmetry. Science. 1977 Feb 25;195(4280):743–753. doi: 10.1126/science.402030. [DOI] [PubMed] [Google Scholar]
- Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struck D. K., Pagano R. E. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J Biol Chem. 1980 Jun 10;255(11):5404–5410. [PubMed] [Google Scholar]
- Sune A., Bette-Bobillo P., Bienvenüe A., Fellmann P., Devaux P. F. Selective outside-inside translocation of aminophospholipids in human platelets. Biochemistry. 1987 Jun 2;26(11):2972–2978. doi: 10.1021/bi00385a003. [DOI] [PubMed] [Google Scholar]
- Tamura A., Tanaka T., Yamane T., Nasu R., Fujii T. Quantitative studies on translocation and metabolic conversion of lysophosphatidylcholine incorporated into the membrane of intact human erythrocytes from the medium. J Biochem. 1985 Jan;97(1):353–359. doi: 10.1093/oxfordjournals.jbchem.a135060. [DOI] [PubMed] [Google Scholar]
- Tamura A., Yoshikawa K., Fujii T., Ohki K., Nozawa Y., Sumida Y. Effect of fatty acyl chain length of phosphatidylcholine on their transfer from liposomes to erythrocytes and transverse diffusion in the membranes inferred by TEMPO-phosphatidylcholine spin probes. Biochim Biophys Acta. 1986 Feb 27;855(2):250–256. doi: 10.1016/0005-2736(86)90171-9. [DOI] [PubMed] [Google Scholar]
- Tilley L., Cribier S., Roelofsen B., Op den Kamp J. A., van Deenen L. L. ATP-dependent translocation of amino phospholipids across the human erythrocyte membrane. FEBS Lett. 1986 Jan 1;194(1):21–27. doi: 10.1016/0014-5793(86)80044-8. [DOI] [PubMed] [Google Scholar]
- Truong H. T., Ferrell J. E., Jr, Huestis W. H. Sulfhydryl reducing agents and shape regulation in human erythrocytes. Blood. 1986 Jan;67(1):214–221. [PubMed] [Google Scholar]
- Verkleij A. J., Zwaal R. F., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L. L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta. 1973 Oct 11;323(2):178–193. doi: 10.1016/0005-2736(73)90143-0. [DOI] [PubMed] [Google Scholar]
- Warner T. G., Benson A. A. An improved method for the preparation of unsaturated phosphatidylcholines: acylation of sn-glycero-3-phosphorylcholine in the presence of sodium methylsulfinylmethide. J Lipid Res. 1977 Jul;18(4):548–552. [PubMed] [Google Scholar]
- Whiteley N. M., Berg H. C. Amidination of the outer and inner surfaces of the human erythrocyte membrane. J Mol Biol. 1974 Aug 15;87(3):541–561. doi: 10.1016/0022-2836(74)90103-x. [DOI] [PubMed] [Google Scholar]
- Williamson P., Antia R., Schlegel R. A. Maintenance of membrane phospholipid asymmetry. Lipid-cytoskeletal interactions or lipid pump? FEBS Lett. 1987 Jul 27;219(2):316–320. doi: 10.1016/0014-5793(87)80243-0. [DOI] [PubMed] [Google Scholar]
- Wirtz K. W. Transfer of phospholipids between membranes. Biochim Biophys Acta. 1974 Sep 16;344(2):95–117. doi: 10.1016/0304-4157(74)90001-x. [DOI] [PubMed] [Google Scholar]
- Zachowski A., Favre E., Cribier S., Hervé P., Devaux P. F. Outside-inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochemistry. 1986 May 6;25(9):2585–2590. doi: 10.1021/bi00357a046. [DOI] [PubMed] [Google Scholar]
- Zachowski A., Herrmann A., Paraf A., Devaux P. F. Phospholipid outside-inside translocation in lymphocyte plasma membranes is a protein-mediated phenomenon. Biochim Biophys Acta. 1987 Feb 12;897(1):197–200. doi: 10.1016/0005-2736(87)90328-2. [DOI] [PubMed] [Google Scholar]
- Zwaal R. F., Roelofsen B., Comfurius P., van Deenen L. L. Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Biochim Biophys Acta. 1975 Sep 16;406(1):83–96. doi: 10.1016/0005-2736(75)90044-9. [DOI] [PubMed] [Google Scholar]
- van Meer G., Op den Kamp J. A. Transbilayer movement of various phosphatidylcholine species in intact human erythrocytes. J Cell Biochem. 1982;19(2):193–204. doi: 10.1002/jcb.240190209. [DOI] [PubMed] [Google Scholar]
- van Meer G., Poorthuis B. J., Wirtz K. W., Op den Kamp J. A., van Deenen L. L. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein. Eur J Biochem. 1980 Jan;103(2):283–288. doi: 10.1111/j.1432-1033.1980.tb04313.x. [DOI] [PubMed] [Google Scholar]
