Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Apr 1;108(4):1567–1574. doi: 10.1083/jcb.108.4.1567

The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35 degrees C yields basement membrane-like structures

PMCID: PMC2115508  PMID: 2522456

Abstract

Three basement membrane components, laminin, collagen IV, and heparan sulfate proteoglycan, were mixed and incubated at 35 degrees C for 1 h, during which a precipitate formed. Centrifugation yielded a pellet which was fixed in either potassium permanganate for ultrastructural studies, or in formaldehyde for Lowicryl embedding and immunolabeling with protein A-gold or anti-rabbit immunoglobulin-gold. Three types of structures were observed and called types A, B, and C. Type B consisted of 30-50-nm-wide strips that were dispersed or associated into a honeycomb-like pattern, but showed no similarity with basement membranes. Immunolabeling revealed that type B strips only contained heparan sulfate proteoglycan. The structure was attributed to self- assembly of this proteoglycan. Type A consisted of irregular strands of material that usually accumulated into semisolid groups. Like basement membrane, the strands contained laminin, collagen IV, and heparan sulfate proteoglycan, and, at high magnification, they appeared as a three-dimensional network of cord-like elements whose thickness averaged approximately 3 nm. But, unlike the neatly layered basement membranes, the type A strands were arranged in a random, disorderly manner. Type C structures were convoluted sheets composed of a uniform, dense, central layer which exhibited a few extensions on both surfaces and was similar in appearance and thickness to the lamina densa of basement membranes. Immunolabeling showed that laminin, collagen IV, and proteoglycan were colocalized in the type C sheets. At high magnification, the sheets appeared as a three-dimensional network of cords averaging approximately 3 nm. Hence, the organization, composition, and ultrastructure of type C sheets made them similar to the lamina densa of authentic basement membranes.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R. Recent studies on the structure and pathology of basement membranes. J Pathol. 1986 Aug;149(4):257–278. doi: 10.1002/path.1711490402. [DOI] [PubMed] [Google Scholar]
  2. Carlson E. C., Audette J. L., Swinscoe J. C. Ultrastructural evidence for morphological specificity in isolated bovine retinal capillary basement membranes. J Ultrastruct Mol Struct Res. 1988 Feb;98(2):184–198. doi: 10.1016/s0889-1605(88)80910-8. [DOI] [PubMed] [Google Scholar]
  3. Charonis A. S., Tsilibary E. C., Saku T., Furthmayr H. Inhibition of laminin self-assembly and interaction with type IV collagen by antibodies to the terminal domain of the long arm. J Cell Biol. 1986 Nov;103(5):1689–1697. doi: 10.1083/jcb.103.5.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foidart J. M., Bere E. W., Jr, Yaar M., Rennard S. I., Gullino M., Martin G. R., Katz S. I. Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein. Lab Invest. 1980 Mar;42(3):336–342. [PubMed] [Google Scholar]
  5. Fransson L. A., Carlstedt I., Cöster L., Malmström A. Proteoheparan sulfate from human skin fibroblasts. Evidence for self-interaction via the heparan sulfate side chains. J Biol Chem. 1983 Dec 10;258(23):14342–14345. [PubMed] [Google Scholar]
  6. Fransson L. A., Havsmark B., Sheehan J. K. Self-association of heparan sulfate. Demonstration of binding by affinity chromatography of free chains on heparan sulfate-substituted agarose gels. J Biol Chem. 1981 Dec 25;256(24):13039–13043. [PubMed] [Google Scholar]
  7. Fransson L. A., Nieduszynski L. A., Sheehan J. K. Interaction between heparan sulphate chains. I. A gel chromatographic, light-scattering and structural study of aggregating and non-aggregating chains. Biochim Biophys Acta. 1980 Jun 19;630(2):287–300. doi: 10.1016/0304-4165(80)90433-x. [DOI] [PubMed] [Google Scholar]
  8. Fransson L. A. Self-association of bovine lung heparan sulphates: identification and characterization of contact zones. Eur J Biochem. 1981 Nov;120(2):251–255. doi: 10.1111/j.1432-1033.1981.tb05696.x. [DOI] [PubMed] [Google Scholar]
  9. Graf J., Iwamoto Y., Sasaki M., Martin G. R., Kleinman H. K., Robey F. A., Yamada Y. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell. 1987 Mar 27;48(6):989–996. doi: 10.1016/0092-8674(87)90707-0. [DOI] [PubMed] [Google Scholar]
  10. Grant D. S., Kleinman H. K., Leblond C. P., Inoue S., Chung A. E., Martin G. R. The basement-membrane-like matrix of the mouse EHS tumor: II. Immunohistochemical quantitation of six of its components. Am J Anat. 1985 Dec;174(4):387–398. doi: 10.1002/aja.1001740403. [DOI] [PubMed] [Google Scholar]
  11. Grant D. S., Leblond C. P. Immunogold quantitation of laminin, type IV collagen, and heparan sulfate proteoglycan in a variety of basement membranes. J Histochem Cytochem. 1988 Mar;36(3):271–283. doi: 10.1177/36.3.2963856. [DOI] [PubMed] [Google Scholar]
  12. Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inoue S., Leblond C. P. Three-dimensional network of cords: the main component of basement membranes. Am J Anat. 1988 Apr;181(4):341–358. doi: 10.1002/aja.1001810403. [DOI] [PubMed] [Google Scholar]
  14. Inoué S., Leblond C. P., Laurie G. W. Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac. J Cell Biol. 1983 Nov;97(5 Pt 1):1524–1537. doi: 10.1083/jcb.97.5.1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klein D. J., Brown D. M., Oegema T. R., Brenchley P. E., Anderson J. C., Dickinson M. A., Horigan E. A., Hassell J. R. Glomerular basement membrane proteoglycans are derived from a large precursor. J Cell Biol. 1988 Mar;106(3):963–970. doi: 10.1083/jcb.106.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kleinman H. K., McGarvey M. L., Hassell J. R., Martin G. R. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry. 1983 Oct 11;22(21):4969–4974. doi: 10.1021/bi00290a014. [DOI] [PubMed] [Google Scholar]
  17. Kleinman H. K., McGarvey M. L., Hassell J. R., Star V. L., Cannon F. B., Laurie G. W., Martin G. R. Basement membrane complexes with biological activity. Biochemistry. 1986 Jan 28;25(2):312–318. doi: 10.1021/bi00350a005. [DOI] [PubMed] [Google Scholar]
  18. Kleinman H. K., McGarvey M. L., Liotta L. A., Robey P. G., Tryggvason K., Martin G. R. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982 Nov 23;21(24):6188–6193. doi: 10.1021/bi00267a025. [DOI] [PubMed] [Google Scholar]
  19. Laurie G. W., Bing J. T., Kleinman H. K., Hassell J. R., Aumailley M., Martin G. R., Feldmann R. J. Localization of binding sites for laminin, heparan sulfate proteoglycan and fibronectin on basement membrane (type IV) collagen. J Mol Biol. 1986 May 5;189(1):205–216. doi: 10.1016/0022-2836(86)90391-8. [DOI] [PubMed] [Google Scholar]
  20. Laurie G. W., Leblond C. P., Inoue S., Martin G. R., Chung A. Fine structure of the glomerular basement membrane and immunolocalization of five basement membrane components to the lamina densa (basal lamina) and its extensions in both glomeruli and tubules of the rat kidney. Am J Anat. 1984 Apr;169(4):463–481. doi: 10.1002/aja.1001690408. [DOI] [PubMed] [Google Scholar]
  21. Laurie G. W., Leblond C. P., Martin G. R. Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol. 1982 Oct;95(1):340–344. doi: 10.1083/jcb.95.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ledbetter S. R., Fisher L. W., Hassell J. R. Domain structure of the basement membrane heparan sulfate proteoglycan. Biochemistry. 1987 Feb 24;26(4):988–995. doi: 10.1021/bi00378a003. [DOI] [PubMed] [Google Scholar]
  23. Lowe-Krentz L. J., Keller J. M. Disulfide-bonded aggregates of heparan sulfate proteoglycans. Biochemistry. 1984 Jun 5;23(12):2621–2627. doi: 10.1021/bi00307a013. [DOI] [PubMed] [Google Scholar]
  24. Martin G. R., Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85. doi: 10.1146/annurev.cb.03.110187.000421. [DOI] [PubMed] [Google Scholar]
  25. Monaghan P., Warburton M. J., Perusinghe N., Rudland P. S. Topographical arrangement of basement membrane proteins in lactating rat mammary gland: comparison of the distribution of type IV collagen, laminin, fibronectin, and Thy-1 at the ultrastructural level. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3344–3348. doi: 10.1073/pnas.80.11.3344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paulsson M. The role of Ca2+ binding in the self-aggregation of laminin-nidogen complexes. J Biol Chem. 1988 Apr 15;263(11):5425–5430. [PubMed] [Google Scholar]
  27. Sanes J. R. Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J Cell Biol. 1982 May;93(2):442–451. doi: 10.1083/jcb.93.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  29. Timpl R., Wiedemann H., van Delden V., Furthmayr H., Kühn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981 Nov;120(2):203–211. doi: 10.1111/j.1432-1033.1981.tb05690.x. [DOI] [PubMed] [Google Scholar]
  30. Todd M. E., Tokito M. K. Improved ultrastructural detail in tissues fixed with potassium permanganate. Stain Technol. 1981 Nov;56(6):335–342. doi: 10.3109/10520298109067340. [DOI] [PubMed] [Google Scholar]
  31. Tsilibary E. C., Charonis A. S. The role of the main noncollagenous domain (NC1) in type IV collagen self-assembly. J Cell Biol. 1986 Dec;103(6 Pt 1):2467–2473. doi: 10.1083/jcb.103.6.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woodley D. T., Rao C. N., Hassell J. R., Liotta L. A., Martin G. R., Kleinman H. K. Interactions of basement membrane components. Biochim Biophys Acta. 1983 Dec 27;761(3):278–283. doi: 10.1016/0304-4165(83)90077-6. [DOI] [PubMed] [Google Scholar]
  33. Yurchenco P. D., Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry. 1984 Apr 10;23(8):1839–1850. doi: 10.1021/bi00303a040. [DOI] [PubMed] [Google Scholar]
  34. Yurchenco P. D., Tsilibary E. C., Charonis A. S., Furthmayr H. Models for the self-assembly of basement membrane. J Histochem Cytochem. 1986 Jan;34(1):93–102. doi: 10.1177/34.1.3510247. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES